Chiba, Japan
Chiba, Japan

Chiba University and it is also abbreviated as Chibadai is a national university in the city of Chiba, Japan. It offers Doctoral degrees in education as part of a coalition with Tokyo Gakugei University, Saitama University, and Yokohama National University. The university was formed in 1949 from existing educational institutions in Chiba Prefecture, and absorbed over a period of years Chiba Medical University , a preparatory department of the Tokyo Medical and Dental University, Chiba Normal School , Tokyo Polytechnic High School , Chiba Horticultural High School, and others. Chiba University was reincorporated in 2010 under the National University Corporation Act. Chiba University has been ranked 75th on the Asia University Rankings 2013 Top 100 by "The Times Higher Education".Currently, Chiba University consists of nine faculties, the university library, the university hospital and other educational and research facilities. With 11,179 students in the undergraduate program, it has long been one of the largest universities in Japan. As for the graduate school, there are about 2,354 students in ten master's programs and 1,220 in nine doctoral programs.Chiba University is proud of its productive faculties and varied courses, the particulars of which will be introduced in the following sections. The University's four campuses, Nishi-Chiba, Inohana, Matsudo, and Kashiwanoha are ideally located in Chiba Prefecture, an area noted for its industrial, intellectual and international achievements. In recent decades Chiba has undergone rapid development which in many ways rivals the neighboring Tokyo Metropolis. Many national projects have been based in Chiba Prefecture, and now Chiba has one of the main international transport centers and one of the largest business centers in Japan . Many new academic and industrial complexes for the advanced science are located in Chiba Prefecture. The developments in Chiba today are representative of tomorrow's Japan. Matters occurring in the most progressive parts of Japan, or even in the world, will provide rich materials for research in various aspects of the human, social, industrial and natural science.Chiba University has achieved a high degree of participation in international cooperative research projects. Chiba University presently has a large body of international research scholars and students studying on its various campuses. As of 2009, there are approximately 477 international researcher and 957 international students. Starting October, 1996, Chiba University launched a one-year scholarship program designed to provide international students with the opportunity to take courses in English. Wikipedia.

Time filter

Source Type

An object of the present invention is to provide a film which has high visibility in solid state and a product which has the film, with simple material composition. One aspect of the present invention is a film which comprises a core-shell particle which has a core and a shell which covers the core. Moreover, another aspect of the present invention is a product which is covered with the film. Further, another aspect of the present invention is a solution in which core-shell particles are dispersed. Hereby, the present invention is possible to realize a film which has high visibility in solid state and a product which has the film, with simple material composition.

A method for quantitatively evaluating chromatin structural changes using pixel imaging of the nucleus is provided. Pixel imaging of the nucleus can include capturing one or more images of a nucleus of one or more nucleic acid stain treated cells. The stain intensity can be measured by quantitating the intensity. The mean and/or standard deviation of stain intensity per pixel can be used to determine chromatin condensation levels or chromatin structural change.

Olympus Corporation and Chiba University | Date: 2016-10-28

Provided is an image processing apparatus including a transformation unit that is configured to deform images so that corresponding points in a plurality of images obtained from several viewpoints with respect to the same subject are matched; a separating unit that is configured to separate specular-reflection components from the plurality of images transformed by the transformation unit and create an image from which the specular-reflection component is removed; and an image reconstructing unit that is configured to combine at least one of the specular-reflection components of the plurality of images, separated by the separating unit, and the image from which the specular-reflection component is removed.

Advanced Healthcare Co. and Chiba University | Date: 2017-01-25

This invention provides a simple projector system that can be operated by a user who is not an expert of image processing technology. The projector system comprises a projector (1), a personal computer (2), a mouse (3), and a calibration board (4). A checker flag pattern is added to the calibration board (4), and an intersection point serves as a marker. A cursor, which is projected from the projector (1) onto the calibration board (4), is used as an intuitive input interface. An operator, while seeing the cursor, operates the mouse (3), thereby placing the cursor onto the calibration marker. In this state, the operator clicks the mouse (3), thereby selecting the calibration marker. The operator then acquires the corresponding projection image coordinates on the basis of the selection instruction.

Kuwabara S.,Chiba University | Yuki N.,National University of Singapore
The Lancet Neurology | Year: 2013

Acute motor axonal neuropathy (AMAN) is a pure motor axonal subtype of Guillain-Barré syndrome (GBS) that was identified in the late 1990s. In Asia and Central and South America, it is the major subtype of GBS, seen in 30-65% of patients. AMAN progresses more rapidly and has an earlier peak than demyelinating GBS; tendon reflexes are relatively preserved or even exaggerated, and autonomic dysfunction is rare. One of the main causes is molecular mimicry of human gangliosides by Campylobacter jejuni lipo-oligosaccharides. In addition to axonal degeneration, electrophysiology shows rapidly reversible nerve conduction blockade or slowing, presumably due to pathological changes at the nodes or paranodes. Autoantibodies that bind to GM1 or GD1a gangliosides at the nodes of Ranvier activate complement and disrupt sodium-channel clusters and axoglial junctions, which leads to nerve conduction failure and muscle weakness. Improved understanding of the disease mechanism and pathophysiology might lead to new treatment options and improve the outlook for patients with AMAN. © 2013 Elsevier Ltd.

Agency: GTR | Branch: NERC | Program: | Phase: Research Grant | Award Amount: 1.47M | Year: 2015

Concerns are growing about how much melting occurs on the surface of the Greenland Ice Sheet (GrIS), and how much this melting will contribute to sea level rise (1). It seems that the amount of melting is accelerating and that the impact on sea level rise is over 1 mm each year (2). This information is of concern to governmental policy makers around the world because of the risk to viability of populated coastal and low-lying areas. There is currently a great scientific need to predict the amount of melting that will occur on the surface of the GrIS over the coming decades (3), since the uncertainties are high. The current models which are used to predict the amount of melting in a warmer climate rely heavily on determining the albedo, the ratio of how reflective the snow cover and the ice surface are to incoming solar energy. Surfaces which are whiter are said to have higher albedo, reflect more sunlight and melt less. Surfaces which are darker adsorb more sunlight and so melt more. Just how the albedo varies over time depends on a number of factors, including how wet the snow and ice is. One important factor that has been missed to date is bio-albedo. Each drop of water in wet snow and ice contains thousands of tiny microorganisms, mostly algae and cyanobacteria, which are pigmented - they have a built in sunblock - to protect them from sunlight. These algae and cyanobacteria have a large impact on the albedo, lowering it significantly. They also glue together dust particles that are swept out of the air by the falling snow. These dust particles also contain soot from industrial activity and forest fires, and so the mix of pigmented microbes and dark dust at the surface produces a darker ice sheet. We urgently need to know more about the factors that lead to and limit the growth of the pigmented microbes. Recent work by our group in the darkest zone of the ice sheet surface in the SW of Greenland shows that the darkest areas have the highest numbers of cells. Were these algae to grow equally well in other areas of the ice sheet surface, then the rate of melting of the whole ice sheet would increase very quickly. A major concern is that there will be more wet ice surfaces for these microorganisms to grow in, and for longer, during a period of climate warming, and so the microorganisms will grow in greater numbers and over a larger area, lowering the albedo and increasing the amount of melt that occurs each year. The nutrient - plant food - that the microorganisms need comes from the ice crystals and dust on the ice sheet surface, and there are fears that increased N levels in snow and ice may contribute to the growth of the microorganisms. This project aims to be the first to examine the growth and spread of the microorganisms in a warming climate, and to incorporate biological darkening into models that predict the future melting of the GrIS. References 1. Sasgen I and 8 others. Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, 293-303(2012). 2. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503, doi:10.1029/2011gl046583 (2011). 3. Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nature Geosci 2, 471-478 (2009).

Photocatalytic reduction of carbon dioxide to fuels using solar energy is an attractive option for simultaneously capturing this major greenhouse gas and solving the shortage of sustainable energy. Efforts to demonstrate the photocatalytic reduction of CO 2 are reviewed herein. Although the photocatalytic results depended on the reaction conditions, such as the incident/absorbing light intensity from the sun or a simulated solar light source, the performance of different systems is compared. When the reactants included CO 2 and water, it was necessary to determine whether the products were derived from CO 2 and not from impurities that accumulated on/in the catalysts as a result of washing, calcination, or pretreatment in a moist environment. Isotope labeling of 13CO 2 was effective for this evaluation using Fourier-transform infrared (FTIR) spectroscopy and mass spectrometry (MS). Comparisons are limited to reports in which the reaction route was verified spectroscopically, the C source was traced isotopically, or sufficient kinetic analyses were performed to verify the photocatalytic events. TiO 2 photocatalytically produced methane at the rate of ∼0.1μmolh -1g cat -1. In aqueous solutions, formic acid, formaldehyde, and methanol were also produced. When TiO 2 was atomically dispersed in zeolites or ordered mesoporous SiO 2 and doped with Pt, Cu, N, I, CdSe, or PbS, the methane and CO formation rates were greater, reaching 1-10μmolh -1g cat -1. As for semiconductors other than TiO 2, CdS, SiC, InNbO 4, HNb 3O 8, Bi 2WO 6, promoted NaNbO 3, and promoted Zn 2GeO 4 produced methane or methanol at rates of 1-10μmolh -1g cat -1, and promoted A IILa 4Ti 4O 15 produced CO at a rate greater than 10μmolh -1g cat -1, in addition to the historically known ZnO and GaP (formaldehyde and methanol formation). The photocatalytic reduction of CO 2 was also surveyed with hydrogen, because hydrogen can be obtained from water photosplitting by utilizing natural light. CO was formed at a rate of ∼1μmolh -1g cat -1 using TiO 2, ZrO 2, MgO, and Ga 2O 3, whereas both CO and methanol were formed at a rate of 0.1-1μmolh -1g cat -1 using layered-double hydroxides consisting of Zn, Cu, Al, and Ga. When hydrogen is used, in addition to identifying the origin of the carbon, it is critical to confirm that the products are photocatalytically formed, not thermally produced via CO 2 hydrogenation. The feasibility of the strategy involving the recycling of a sacrificial electron donor and the direct supply of protons and electrons released from water oxidation catalysts to photocatalysts for the reduction of CO 2 to fuels has been demonstrated. However, based on the results obtained to date, it is clear that the practical use of the photocatalytic reduction of CO 2 as one possible solution for global warming and the world's energy problems requires the development of more efficient photocatalysts. © 2012 Elsevier B.V..

Hashimoto K.,Chiba University
Expert Opinion on Therapeutic Targets | Year: 2014

Introduction: Abnormalities in glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) are implicated in the pathophysiology of schizophrenia, although the precise mechanisms are unknown. Areas covered: The author examines the role of the NMDA receptor in schizophrenia, focusing on results from preclinical and clinical studies that support the NMDA receptor hypothesis of schizophrenia. The author first reviewed papers detailing alterations in the levels of endogenous substances such as glutamine, glutamate, d-serine, l-serine, kynurenic acid and glutathione (GSH), all of which can affect NMDA receptor function. Next, the author reviewed clinical findings for glycine, d-serine, d-cycloserine, d-amino acid oxidase inhibitors (e.g., sodium benzoate) and glycine transporter-1 inhibitors (e.g., sarcosine, bitopertin), as potential therapeutic drugs. In addition, the author outlined how oxidative stress associated with decreased levels of the endogenous antioxidant GSH may play a role in the pathophysiology of schizophrenia. Finally, the author reviewed N-acetylcysteine (NAC), a precursor of GSH and an activator of the cystine-glutamate antiporter, as a potential therapeutic drug. Expert opinion: Given the NMDA receptor hypothesis of schizophrenia, the glycine modulatory site on NMDA receptors is the most attractive therapeutic target for this disease. In addition, both the kynurenine pathway and cystine-glutamate antiporter represent credible potential therapeutic targets for schizophrenia. © 2014 Informa UK, Ltd.

Metformin, an antidiabetic drug, decreases the incidence of various cancers in diabetic patients. Metformin-induced inhibition of cancer cell proliferation has been confirmed in vitro but not in humans. Because endometrial cancer is associated with insulin resistance, the authors investigated whether a diabetes-therapeutic metformin dose inhibits cancer cell growth in patients with endometrial cancer. A dose of metaformin was administered (1500-2250 mg/day) to 31 patients with endometrial cancer preoperatively for 4 to 6 weeks. Cell proliferation was assessed in patient tissues using immunohistochemical and Western blot analyses and DNA synthesis was measured in serum using a thymidine uptake assay. All statistical tests were 2-sided. P values of < .05 were considered statistically significant. Preoperative metformin treatment decreased DNA synthesis in sera and significantly reduced the Ki-67 (mean proportional decrease, 44.2%; 95% confidence interval [95% CI], 35.4-53.0 [P < .001]) and topoisomerase IIα (mean proportional decrease, 36.4%; 95% CI, 26.7-46.0 [P < .001]) labeling indices. Levels of phospho-ribosomal protein S6 and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) were found to be significantly decreased and phospho-adenosine monophosphate-activated protein kinase and p27 levels were significantly increased. Preoperative metformin use caused significant decreases in circulating factors, including insulin, glucose, insulin-like growth factor 1, and leptin. DNA synthesis-stimulating activity in patient sera was significantly decreased during metformin administration. An antidiabetic dose of metformin inhibited endometrial cancer cell growth in vivo, an effect likely due to its effect on humoral factor(s). This translational study provides considerable rationale to initiate large clinical trials. © 2014 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.

Disclosed are: a polypeptide marker for diagnosing arteriosclerosis; a gene marker for diagnosing arteriosclerosis; an antibody; a probe for detecting an arteriosclerosis marker gene; a DNA microarray or a DNA chip for detecting an arteriosclerosis marker gene; a method for detecting arteriosclerosis; and a kit for diagnosing arteriosclerosis; with which an arteriosclerotic lesion can be detected with much improved accuracy. Specifically disclosed are: a polypeptide marker for diagnosing arteriosclerosis, which comprises a polypeptide having an amino acid sequence set forth in SEQ ID NO: 31 of the Sequence Listing, or a partial amino acid sequence thereof; a gene which encodes the amino acid sequence; a probe for detecting the gene; a DNA microarray or a DNA chip comprising the probe; an antibody bindable to the polypeptide as an antigen; a kit comprising any one of the above-mentioned items; and a method for detecting arteriosclerosis by using any one of the above-mentioned items.

Loading Chiba University collaborators
Loading Chiba University collaborators