Time filter

Source Type

Edmonton, Canada

Karunasena E.,Virginia Polytechnic Institute and State University | McMahon K.W.,Virginia Polytechnic Institute and State University | Chang D.,Chenomx Inc. | Brashears M.M.,Texas Tech University
Applied and Environmental Microbiology | Year: 2014

Differences between microbial pathogenesis in male and female hosts are well characterized in disease conditions connected to sexual transmission. However, limited biological insight is available on variances attributed to sex specificity in host-microbe interactions, and it is most often a minimized variable outside these transmission events. In this work, we studied two gut microbes- a pathogen, Mycobacterium avium subsp. paratuberculosis, and a probiotic, Lactobacillus animalis NP-51-and the interaction between each agent and the male and female gastrointestinal systems. This trial was conducted in BALB/c mice (n = 5 per experimental group and per sex at a given time point), with analysis at four time points over 180 days. Host responses to M. avium subsp. paratuberculosis and L. animalis were sensitive to sex. Cytokines that were significantly different (P≤0.05) between the sexes included interleukin-1α/β (IL-1α/β), IL-17, IL-6, IL-10, IL-12, and gamma interferon (IFN-γ) and were dependent on experimental conditions. However, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and IL-13/23 showed no sex specificity. A metabolomics study indicated a 0.5- to 2.0-fold (log2 scale) increase in short-chain fatty acids (butyrate and acetate) in males and greater increases in o-phosphocholine or histidine from female colon tissues; variances distinct to each sex were observed with age or long-term probiotic consumption. Two genera, Staphylococcus and Roseburia, were consistently overrepresented in females compared to males; other species were specific to one sex but fluctuated depending on experimental conditions. The differences observed suggest that male and female gut tissues and microbiota respond to newly introduced microorganisms differently and that gut-associated microorganisms with host immune system responses and metabolic activity are supported by biology distinct to the host sex. © 2014, American Society for Microbiology.

Sokolenko S.,University of Waterloo | Blondeel E.J.M.,University of Waterloo | Azlah N.,University of Waterloo | George B.,University of Waterloo | And 4 more authors.
Analytical Chemistry | Year: 2014

Single-dimension hydrogen, or proton, nuclear magnetic resonance spectroscopy (1D-1H NMR) has become an attractive option for characterizing the full range of components in complex mixtures of small molecular weight compounds due to its relative simplicity, speed, spectral reproducibility, and noninvasive sample preparation protocols compared to alternative methods. One challenge associated with this method is the overlap of NMR resonances leading to "convoluted" spectra. While this can be mitigated through "targeted profiling", there is still the possibility of increased quantification error. This work presents the application of a Plackett-Burman experimental design for the robust estimation of precision and accuracy of 1D-1H NMR compound quantification in synthetic mixtures, with application to mammalian cell culture supernatant. A single, 20 sample experiment was able to provide a sufficient estimate of bias and variability at different metabolite concentrations. Two major sources of bias were identified: incorrect interpretation of singlet resonances and the quantification of resonances from protons in close proximity to labile protons. Furthermore, decreases in measurement accuracy and precision could be observed with decreasing concentration for a small fraction of the components as a result of their particular convolution patterns. Finally, the importance of a priori concentration estimates is demonstrated through the example of interpreting acetate metabolite trends from a bioreactor cultivation of Chinese hamster ovary cells expressing a recombinant antibody. © 2014 American Chemical Society.

Chenomx Inc. | Date: 2005-07-26

Computer programs for nuclear magnetic resonance analysis. Providing nuclear magnetic resonance analysis to others.

Chenomx Inc. | Date: 2005-07-26

Computer programs for nuclear magnetic resonance analysis. Providing nuclear magnetic resonance analysis to others.

Blondeel E.J.M.,University of Waterloo | Braasch K.,University of Manitoba | McGill T.,University of Waterloo | Chang D.,Chenomx Inc. | And 4 more authors.
Journal of Biotechnology | Year: 2015

Glycosylation is a critical quality attribute of many therapeutic proteins, particularly monoclonal antibodies (MAbs). Nucleotide-sugar precursors supplemented to growth medium to affect the substrate supply chain of glycosylation has yielded promising but varied results for affecting glycosylation. Glucosamine (GlcN), a precursor for N-acetylglucosamine (GlcNAc), is a major component of mammalian glycans. The supplementation of GlcN to CHO cells stably-expressing a chimeric heavy-chain monoclonal antibody, EG2-hFc, reduces the complexity of glycans to favour G0 glycoforms, while also negatively impacting cell growth. Although several researchers have examined the supplementation of glucosamine, no clear explanation of its impact on cell growth has been forthcoming. In this work, the glucosamine metabolism is examined. We identified the acetylation of GlcN to produce GlcNAc to be the most likely cause for the negative impact on growth due to the depletion of intracellular acetyl-CoA pools in the cytosol. By supplementing GlcNAc in lieu of GlcN to CHO cells producing EG2-hFc, we achieve the same shift in glycan complexity with marginal impacts on the cell growth and protein production. © 2015 Elsevier B.V.

Discover hidden collaborations