Chemistry Research Unit

Gainesville, FL, United States

Chemistry Research Unit

Gainesville, FL, United States
SEARCH FILTERS
Time filter
Source Type

Beck J.J.,Chemistry Research Unit | Vannette R.L.,University of California at Davis
Journal of Agricultural and Food Chemistry | Year: 2017

Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- And host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations. © 2016 American Chemical Society.


Vaughan M.M.,National United University | Block A.,Chemistry Research Unit | Christensen S.A.,Chemistry Research Unit | Allen L.H.,Chemistry Research Unit | Schmelz E.A.,University of California at San Diego
Phytochemistry Reviews | Year: 2017

Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. Protective phytochemicals play an important role in both abiotic stress resilience and resistance to biotic challenges, yet the concentration and composition of these phytochemicals are also dependent on climate variables. We review the research on the effects of climate change associated abiotic stresses on three classes of maize defense metabolites, including benzoxazinoids, volatile organic compounds, and terpenoid phytoalexins. Despite significant knowledge gaps that still exist, it is evident that climate change will influence maize phytochemicals associated with resilient productivity. While broad generalizations are not yet possible, climate induced changes in phytochemicals are context specific and dependent upon developmental stage and tissue type. Under conditions of drought, maize modulates different classes of defense phytochemicals to protect the above-and belowground tissues. Aboveground the benzoxazinoid defenses are stimulated, but belowground terpenoid phytoalexins are predominantly deployed. Changes in the allocation or distribution of the different classes of defense metabolites or signaling molecules have the potential to further shape the biodiversity and abundance of pests within the maize agroecosystem. A better understanding of the underlying genetics, biosynthetic pathways, regulation and precise biological roles of maize phytochemicals modulated by arrays of climatic conditions will be required to ensure optimal plant resilience and productivity in the face of combined biotic and abiotic stresses. © 2017 Springer Science+Business Media Dordrecht (outside the USA)


PubMed | University of Florida, Chemistry Research Unit, Samuel Roberts Noble Foundation and Thermo Fisher Scientific
Type: | Journal: The Plant journal : for cell and molecular biology | Year: 2016

Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO


PubMed | Chemistry Research Unit, Boyce Thompson Institute for Plant Research, University of Cologne, Kaplan Schiller Research and 6 more.
Type: Journal Article | Journal: Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed jasmonates. As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed death acids. 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.


Nino E.L.,Pennsylvania State University | Malka O.,Tel Aviv University | Hefetz A.,Tel Aviv University | Teal P.,Chemistry Research Unit | And 2 more authors.
Journal of Insect Physiology | Year: 2012

Honey bee colonies consist of tens of thousands of workers and a single reproductive queen that produces a pheromone blend which maintains colony organization. Previous studies indicated that the insemination quantity and volume alter queen mandibular pheromone profiles. In our 11-month long field study we show that workers are more attracted to high-volume versus low-volume inseminated queens, however, there were no significant differences between treatments in the number of queen cells built by workers in preparation for supersedure. Workers exposed to low-volume inseminated queens initiated production of queen-like esters in their Dufour's glands, but there were no significant difference in the amount of methyl farnesoate and juvenile hormone in worker hemolymph. Lastly, queen overwintering survival was unexpectedly lower in high-volume inseminated queens. Our results suggest that the queen insemination volume could ultimately affect colony health and productivity. © 2012 Elsevier Ltd.


Cha D.H.,Cornell University | Linn Jr. C.E.,Cornell University | Teal P.E.A.,Chemistry Research Unit | Zhang A.,Biocontrol | And 2 more authors.
PLoS ONE | Year: 2011

We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components ("optimized blend"), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals.


Vaughan M.M.,U.S. Department of Agriculture | Christensen S.,Chemistry Research Unit | Schmelz E.A.,Chemistry Research Unit | Huffaker A.,Chemistry Research Unit | And 5 more authors.
Plant, Cell and Environment | Year: 2015

Maize (Zea mays) production, which is of global agro-economic importance, is largely limited by herbivore pests, pathogens and environmental conditions, such as drought. Zealexins and kauralexins belong to two recently identified families of acidic terpenoid phytoalexins in maize that mediate defence against both pathogen and insect attacks in aboveground tissues. However, little is known about their function in belowground organs and their potential to counter abiotic stress. In this study, we show that zealexins and kauralexins accumulate in roots in response to both biotic and abiotic stress including, Diabrotica balteata herbivory, Fusarium verticillioides infection, drought and high salinity. We find that the quantity of drought-induced phytoalexins is positively correlated with the root-to-shoot ratio of different maize varieties, and further demonstrate that mutant an2 plants deficient in kauralexin production are more sensitive to drought. The induction of phytoalexins in response to drought is root specific and does not influence phytoalexin levels aboveground; however, the accumulation of phytoalexins in one tissue may influence the induction capacity of other tissues. Terpenoid phytoalexins accumulate in maize roots with Diabrotica balteata herbivory, Fusarium verticillioides infection, drought and high salinity. Mutant an2 plants deficient in kauralexin biosynthesis are more sensitive to drought. Commentary: Small molecules with big impact: terpenoid phytoalexins as key factors in maize stress tolerance © 2015 John Wiley & Sons Ltd.


PubMed | University of Florida, University of America and Chemistry Research Unit
Type: Journal Article | Journal: PloS one | Year: 2016

Changes in climate due to rising atmospheric carbon dioxide concentration ([CO2]) are predicted to intensify episodes of drought, but our understanding of how these combined conditions will influence crop-pathogen interactions is limited. We recently demonstrated that elevated [CO2] alone enhances maize susceptibility to the mycotoxigenic pathogen, Fusarium verticillioides (Fv) but fumonisin levels remain unaffected. In this study we show that maize simultaneously exposed to elevated [CO2] and drought are even more susceptible to Fv proliferation and also prone to higher levels of fumonisin contamination. Despite the increase in fumonisin levels, the amount of fumonisin produced in relation to pathogen biomass remained lower than corresponding plants grown at ambient [CO2]. Therefore, the increase in fumonisin contamination was likely due to even greater pathogen biomass rather than an increase in host-derived stimulants. Drought did not negate the compromising effects of elevated [CO2] on the accumulation of maize phytohormones and metabolites. However, since elevated [CO2] does not influence the drought-induced accumulation of abscisic acid (ABA) or root terpenoid phytoalexins, the effects elevated [CO2] are negated belowground, but the stifled defense response aboveground may be a consequence of resource redirection to the roots.


PubMed | University of Florida, Chemistry Research Unit and U.S. Department of Agriculture
Type: Journal Article | Journal: Plant, cell & environment | Year: 2015

Maize (Zea mays) production, which is of global agro-economic importance, is largely limited by herbivore pests, pathogens and environmental conditions, such as drought. Zealexins and kauralexins belong to two recently identified families of acidic terpenoid phytoalexins in maize that mediate defence against both pathogen and insect attacks in aboveground tissues. However, little is known about their function in belowground organs and their potential to counter abiotic stress. In this study, we show that zealexins and kauralexins accumulate in roots in response to both biotic and abiotic stress including, Diabrotica balteata herbivory, Fusarium verticillioides infection, drought and high salinity. We find that the quantity of drought-induced phytoalexins is positively correlated with the root-to-shoot ratio of different maize varieties, and further demonstrate that mutant an2 plants deficient in kauralexin production are more sensitive to drought. The induction of phytoalexins in response to drought is root specific and does not influence phytoalexin levels aboveground; however, the accumulation of phytoalexins in one tissue may influence the induction capacity of other tissues.


Amsalem E.,Pennsylvania State University | Teal P.,Chemistry Research Unit | Grozinger C.M.,Pennsylvania State University | Hefetz A.,Tel Aviv University
Journal of Experimental Biology | Year: 2014

Juvenile hormone (JH) is an important regulator of development and physiology in insects. While in many insect species, including bumble bees, JH functions as gonadotropin in adults, in some highly eusocial insects its role has shifted to regulate social behavior including division of labor, dominance and aggression. Studying JH functions across social insect species is important for understanding the evolution of sociality; however, these studies have been limited because of the inability to reduce JH levels without surgically removing its glandular source, the corpora allata. Precocene is known to inhibit JH biosynthesis in several non-social insects, but has been poorly studied in social insects. Here, we tested whether precocene-I can effectively reduce JH levels in Bombus terrestris workers, and examined its effects on their physiology and behavior. Precocene-I treatment of three-worker groups decreased JH titer and ovarian activation, irrespective of the bees' dominance rank within the group, and was remedied by JH replacement therapy. Precocene-I also decreased aggressiveness and increased ester-sterility signal production; these changes were rank-dependent, and affected mainly the most reproductive and the least aggressive workers, respectively, and could not be remedied by JH replacement therapy. These results clearly confirm the role of JH as a gonadotropin and mediator of aggression in B. terrestris, and indicate that JH effects are associated with worker dominance rank. The ability to chemically reduce JH titer provides us with a non-intrusive method to probe the evolutionary changes associated with JH and the hormonal mechanisms that are associated with reproduction and behavior in social insects. © 2014. Published by The Company of Biologists Ltd.

Loading Chemistry Research Unit collaborators
Loading Chemistry Research Unit collaborators