Time filter

Source Type

Ajikumar P.K.,Massachusetts Institute of Technology | Xiao W.-H.,Massachusetts Institute of Technology | Tyo K.E.J.,Massachusetts Institute of Technology | Wang Y.,Tufts University | And 6 more authors.

Taxol (paclitaxel) is a potent anticancer drug first isolated from the Taxus brevifolia Pacific yew tree. Currently, cost-efficient production of Taxol and its analogs remains limited. Here, we report a multivariate-modular approach to metabolic-pathway engineering that succeeded in increasing titers of taxadiene - the first committed Taxol intermediate - approximately 1 gram per liter (∼15,000-fold) in an engineered Escherichia coli strain. Our approach partitioned the taxadiene metabolic pathway into two modules: a native upstream methylerythritol-phosphate (MEP) pathway forming isopentenyl pyrophosphate and a heterologous downstream terpenoid-forming pathway. Systematic multivariate search identified conditions that optimally balance the two pathway modules so as to maximize the taxadiene production with minimal accumulation of indole, which is an inhibitory compound found here. We also engineered the next step in Taxol biosynthesis, a P450-mediated 5α-oxidation of taxadiene to taxadien-5α-ol. More broadly, the modular pathway engineering approach helped to unlock the potential of the MEP pathway for the engineered production of terpenoid natural products. Source

Carlsen S.,Technical University of Denmark | Carlsen S.,Massachusetts Institute of Technology | Ajikumar P.K.,Massachusetts Institute of Technology | Ajikumar P.K.,Manus Biosynthesis, Inc. | And 8 more authors.
Applied Microbiology and Biotechnology

Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-d-erythritol-2,4- cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U-13C6 glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron-sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron-sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron-sulfur cluster proteins in its cytosol. © 2013 Springer-Verlag Berlin Heidelberg. Source

Li J.,Chemical and Pharmaceutical Engineering Program | Garg M.,Chemical and Pharmaceutical Engineering Program | Shah D.,Chemical and Pharmaceutical Engineering Program | Rajagopalan R.,Chemical and Pharmaceutical Engineering Program | Rajagopalan R.,National University of Singapore
Journal of Chemical Physics

Experiments hold intriguing, circumstantial clues to the mechanisms behind arginine-mediated solubilization of small organic drugs and suppression of protein aggregation driven by hydrophobic or aromatic associations, but how exactly arginine's molecular structure and interactions contribute to its function remains unclear since attention has focused so far on the thermodynamics of the preferential exclusion or binding of arginine. Here, we examine, through molecular dynamics simulations, how arginine solubilizes nanoscale particles with hydrophobic surfaces or aromatic-ring-type surface interactions. We show that preferential, hydrophobic, and dispersion interactions of arginine's guanidinium group with the particles lead to a surfactant-like behavior of arginine around the particles and to a solvation layer with a protective polar mask creating a hydrophilic shell. Additionally, arginine-arginine association around the solvation layer further prevents aggregative contacts. The results shed some light on the mechanistic basis of arginine's function as a suppressant of protein aggregation, although the complex energy landscapes and kinetic pathways of aggregation are protein-dependent and pose formidable challenges to developing comprehensive mechanistic pictures. Our results suggest arginine's mode of interaction with hydrophobic patches and aromatic residues could reduce aggregation-prone intermediate states of proteins and shield protein-protein aggregative contacts. The approach used here offers a systematic way of exploring implications of other amino acid/excipient interactions by studying interactions of the excipient with particles grafted with amino acids. © 2010 American Institute of Physics. Source

Discover hidden collaborations