Time filter

Source Type

Sheffield, United Kingdom

Jaffe S.R.P.,ChELSI Institute | Strutton B.,ChELSI Institute | Levarski Z.,Comenius University | Pandhal J.,ChELSI Institute | Wright P.C.,ChELSI Institute
Current Opinion in Biotechnology | Year: 2014

Chinese Hamster Ovary cells are the most popular host expression system for the large-scale production of human therapeutic glycoproteins, but, the race to engineer Escherichia coli to perform glycosylation is gathering pace. The successful functional transfer of an N-glycosylation pathway from Campylobacter jejuni to Escherichia coli in 2002 can be considered as the crucial first engineering step. Here, we discuss the recent advancements in the field of N-glycosylation of recombinant therapeutic proteins in E. coli cells, from the manipulation of glycan composition, to the improvement in glycosylation efficiency, along with the challenges that remain before E. coli can be available as an industry host cell for economically viable glycoprotein production. © 2014 Elsevier Ltd.

Deines P.,ChELSI Institute | Deines P.,University of Sheffield | Deines P.,University of Auckland | Sekar R.,ChELSI Institute | And 5 more authors.
Applied Microbiology and Biotechnology | Year: 2010

This study presents a new coupon sampling device that can be inserted directly into the pipes within water distribution systems (WDS), maintaining representative near wall pipe flow conditions and enabling simultaneous microscopy and DNA-based analysis of biofilms formed in situ. To evaluate this sampling device, fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses were used to investigate changes in biofilms on replicate coupons within a non-sterile pilot-scale WDS. FISH analysis demonstrated increases in bacterial biofilm coverage of the coupon surface over time, while the DGGE analysis showed the development of increasingly complex biofilm communities, with time-specific clustering of these communities. This coupon design offers improvements over existing biofilm sampling devices in that it enables simultaneous quantitative and qualitative compositional characterization of biofilm assemblages formed within a WDS, while importantly maintaining fully representative near wall pipe flow conditions. Hence, it provides a practical approach that can be used to capture the interactions between biofilm formation and changing abiotic conditions, boundary shear stress, and turbulent driven exchange within WDS. © Springer-Verlag 2010.

Pewsey E.,University of Sheffield | Bruce C.,University of Sheffield | Tonge P.,University of Sheffield | Evans C.,ChELSI Institute | And 5 more authors.
Journal of Proteome Research | Year: 2010

The use of stem cells for generating cell types suitable for therapy is dependent on understanding the mechanisms, and identifying biomarkers, that control cell fate into different lineages. In this study, we aimed to characterize the nuclear protein dynamics of NTERA-2 cells undergoing retinoic acid-induced differentiation. We focused specifically on the first six days of differentiation, to provide insight into the earliest differentiation events, and employed techniques to specifically monitor the nuclear proteome. Well-characterized gene expression markers were used to precisely stage cell differentiation across the experimental time course. A combination of the novel iTRAQ and ExacTag labeling technologies, together with LC-ESI tandem mass spectrometry, were then used to accurately measure nuclear protein expression changes occurring within these differentiation-staged cells. We report proteins that showed significantly altered expression over the first 6 days of differentiation. Extensive bioinformatic analysis was undertaken, resulting in the construction of a novel interactome network, which revealed the temporal dynamics of the nuclear protein network in the context of neuronal differentiation. © 2010 American Chemical Society.

Discover hidden collaborations