Time filter

Source Type

Pohang, South Korea

We describe our assembly and the analytical performance of a glucose biosensor consisting of an array of carbon nanotubes (CNTs) that perpendicularly fall on a 7-μm-diameter carbon fiber and are modified by a "dual" enzymatic system- viz. glucose oxidase (GOx) and Prussian blue (PB, an artificial peroxidase). We chose to use the PB-catalyzed reduction reaction of hydrogen peroxide, an end-product of the GOx-catalyzed oxidation of glucose, to "relay" electrons from GOx to the substrate electrode. We highlight that the electrode-structural alignment of this novel biosensing system plays a crucial role in optimizing the electrochemical- and catalytic-reactions of the enzymes with their substrates. The vertical alignment of enzyme-modified CNTs with the pores located between neighboring individual CNTs creates the simplest optimized pathways for substrates to diffuse to the enzymes and for the generated electrical signals to transport along the nanotube's length to an electronic analyzer. Consequently, the glucose biosensor thus constructed exhibits a high sensitivity of 4.9. μA/mM with a detection limit of 0.05. mmol/L and long-term stability in amperometrically detecting glucose. Our long-range-order assembling of electroactive biomolecules and microscale/nanoscale materials into a multifunctional biocomposite accounts for this superb performance of vital importance in their realistic applications in deciphering glucose and hydrogen peroxide. © 2013 Elsevier Inc. Source

Disclosed are a positive photosensitive resin composition including (A) an alkali soluble resin; (B) a photosensitive diazoquinone compound; (C) a first dissolution-controlling agent including at least one of compounds represented by the following Chemical Formula 1 or Chemical Formula 2; (D) a second dissolution-controlling agent including a compound represented by the following Chemical Formula 3; and (E) a solvent, and a photosensitive resin film and a display device using the same.

A composition for solar cell electrodes includes a conductive powder, a glass frit, an organic vehicle, and a thixotropic agent, the composition satisfying each of Formulae 1 to 7 described herein. A solar cell electrode is produced from the composition. A method of manufacturing a solar cell includes printing the composition in a predetermined pattern over a front surface of a wafer, and firing the printed composition pattern to form at least electrode.

A silane compound is represented by Formula 1: wherein each R

Samsung, Corning Precision Materials Co. and Cheil Industries Inc. | Date: 2015-09-04

Optical films, and organic light-emitting display apparatuses employing the same, include a high refractive index pattern layer including a first surface and a second surface facing each other, wherein the first surface includes a pattern having a plurality of grooves. The plurality of grooves each have a curved surface and a depth greater than a width thereof. The high refractive index pattern layer is formed of a material having a refractive index greater than 1. The optical films, and the organic light-emitting display apparatuses, further include a low refractive index pattern layer formed of a material having a refractive index smaller than the refractive index of the material constituting the high refractive index pattern layer. The low refractive index pattern layer includes a filling material for filling the plurality of grooves.

Discover hidden collaborations