Entity

Time filter

Source Type

Augusta, GA, United States

Bollag W.B.,Charlie Norwood Medical Center | Bollag W.B.,Georgia Regents University
Comprehensive Physiology | Year: 2014

Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders. © 2014 American Physiological Society. Source


Hattangady N.G.,Georgia Regents University | Olala L.O.,Georgia Regents University | Bollag W.B.,Georgia Regents University | Bollag W.B.,Charlie Norwood Medical Center | Rainey W.E.,Georgia Regents University
Molecular and Cellular Endocrinology | Year: 2012

Aldosterone is the major mineralocorticoid synthesized by the adrenal and plays an important role in the regulation of systemic blood pressure through the absorption of sodium and water. Aldosterone production is regulated tightly by selective expression of aldosterone synthase (CYP11B2) in the adrenal outermost zone, the zona glomerulosa. Angiotensin II (Ang II), potassium (K +) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. Aldosterone production is regulated within minutes of stimulation (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein and over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly CYP11B2. Imbalance in any of these processes may lead to several disorders of aldosterone excess. In this review we attempt to summarize the key molecular events involved in the acute and chronic phases of aldosterone secretion. © 2011 Elsevier Ireland Ltd. Source


Wei Q.,Georgia Regents University | Dong G.,Georgia Regents University | Chen J.-K.,Georgia Regents University | Ramesh G.,Georgia Regents University | And 3 more authors.
Kidney International | Year: 2013

Bax and Bak, two pro-apoptotic Bcl-2 family proteins, have been implicated in acute kidney injury following renal ischemia/reperfusion; however, definitive evidence for a role of these genes in the disease process is lacking. Here we first examined two Bax-deficient mouse models and found that only conditional Bax deletion specifically from proximal tubules could ameliorate ischemic acute kidney injury. Global (whole mouse) knockout of Bax enhanced neutrophil infiltration without significant effect on kidney injury. In contrast, global knockout of Bak protected mice from ischemic acute kidney injury with improved renal function. Interestingly, in these models, Bax or Bak knockout attenuated renal tubular cell apoptosis without significantly affecting necrotic tubular damage. Cytochrome c release in ischemic acute kidney injury was also suppressed in conditional Bax- or global Bak-knockout mice. In addition, Bak deficiency prevented mitochondrial fragmentation in ischemic acute kidney injury. Thus, our gene-knockout studies support a critical role of Bax and Bak in tubular cell apoptosis in ischemic acute kidney. Furthermore, necrosis and apoptosis have distinguishable regulatory functions. © 2013 International Society of Nephrology. Source


Wei Q.,Georgia Regents University | Dong Z.,Georgia Regents University | Dong Z.,Charlie Norwood Medical Center
American Journal of Physiology - Renal Physiology | Year: 2012

Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a wellcontrolled, reliable animal model of ischemic AKI. © 2012 the American Physiological Society. Source


Jiang M.,Georgia Regents University | Liu K.,Georgia Regents University | Luo J.,Charlie Norwood Medical Center | Luo J.,University of Kentucky | Dong Z.,Georgia Regents University
American Journal of Pathology | Year: 2010

Autophagy mediates bulk degradation and recycling of cytoplasmic constituents to maintain cellular homeostasis. In response to stress, autophagy is induced and may either contribute to cell death or serve as a cell survival mechanism. Very little is known about autophagy in renal pathophysiology. This study examined autophagy and its pathological role in renal cell injury using in vitro and in vivo models of ischemia - reperfusion. We found that hypoxia (1% O 2) induced autophagy in cultured renal proximal tubular cells. Blockade of autophagy by 3-methyladenine or small-interfering RNA knockdown of Beclin-1 and ATG5 (two key autophagic genes) sensitized the tubular cells to hypoxia-induced apoptosis. In an in vitro model of ischemia - reperfusion, autophagy was not induced by anoxic (0% O 2) incubation in glucose-free buffer, but was induced during subsequent recovery/reperfusion period. In this model, suppression of autophagy also enhanced apoptosis. In vivo, autophagy was induced in kidney tissues during renal ischemia - reperfusion in mice. Autophagy was not obvious during the ischemia period, but was significantly enhanced during reperfusion. Inhibition of autophagy by chloroquine and 3-methyladenine worsened renal ischemia/reperfusion injury, as indicated by renal function, histology, and tubular apoptosis. Together, the results demonstrated autophagy induction during hypoxic and ischemic renal injury. Under these pathological conditions, autophagy may provide a protective mechanism for cell survival. Copyright © American Society for Investigative Pathology. Source

Discover hidden collaborations