Charles River Preclinical Services

Senneville, Canada

Charles River Preclinical Services

Senneville, Canada
SEARCH FILTERS
Time filter
Source Type

Collinge M.,Pfizer | Burns-Naas L.A.,Gilead Sciences Inc. | Chellman G.J.,Charles River Preclinical Services | Kawabata T.T.,Pfizer | And 4 more authors.
Journal of Immunotoxicology | Year: 2012

The development and regulatory approval of immunomodulatory pharmaceuticals to treat many human diseases has increased significantly over the last two decades. As discussed by FDA and ICH guidelines, all human pharmaceuticals in development should be evaluated for potential adverse effects on the immune system. Developmental immunotoxicology (DIT) focuses on the concern that early-life (during pre-/post-natal development) exposure to agents which target the immune system may result in enhanced susceptibility to immune-related disease (e.g., infection, autoimmunity, and cancer, particularly leukemia) compared to adults, unique effects not observed in adults, or more persistent effects in comparison to those following adult exposure. This article provides a substantive review of the literature and presents detailed considerations for DIT testing strategies with a specific focus on pharmaceuticals and biopharmaceuticals. In this regard, differences between small molecule and large molecule therapeutics will be considered, along with recommendations for best practices in the assessment of DIT during drug development. In addition, gaps in the DIT knowledge base and current testing strategies are identified. Finally, a summary of an ILSI-HESI-ITC sponsored Workshop conducted in 2010, entitled 'Developmental Immunotoxicity Testing of Pharmaceuticals' will be presented. This Workshop consisted of participants from the pharmaceutical, biotechnology, academic, and regulatory sectors, where many of the issues relating to DIT outlined in this review were discussed, key points of consensus reached, and current gaps in the science identified. © 2012 Informa Healthcare USA, Inc.


Ganderup N.C.,Ellegaard Gottingen Minipigs | Harvey W.,Charles River Preclinical Services | Mortensen J.T.,CiToxLAB Scantox | Harrouk W.,U.S. FDA
International Journal of Toxicology | Year: 2012

Over the past 3 decades minipigs have moved from being an obscure alternative to dogs and nonhuman primates to being a standard animal model in regulatory toxicity studies. This article covers the use of minipigs as a model in the context of nonclinical drug safety and provides an overview of the minipig's developmental history and relates minipigs to other animal species commonly used in toxicology; and the minipig's translational power is supported by 43 case studies of marketed drug products covered. Special focus is given to criteria for selecting minipigs in nonclinical programs supporting the development of new medicines; the use of swine in the assessment of food additives, agrochemicals, and pesticides; as well as a regulatory perspective on the use of minipigs in Food and Drug Administration (FDA)-regulated products. This article presents the main points conveyed at a symposium held at the 2010 American College of Toxicology meeting in Baltimore, Maryland. © 2012 The Author(s).


Morford L.L.,Lilly Research Laboratories | Bowman C.J.,Pfizer | Bogh I.B.,Novo Nordisk AS | Chellman G.J.,Charles River Preclinical Services | And 3 more authors.
Birth Defects Research Part B - Developmental and Reproductive Toxicology | Year: 2011

Evaluation of pharmaceutical agents in children is now conducted earlier in the drug development process. An important consideration for this pediatric use is how to assess and support its safety. This article is a collaborative effort of industry toxicologists to review strategies, challenges, and current practice regarding preclinical safety evaluations supporting pediatric drug development with biopharmaceuticals. Biopharmaceuticals include a diverse group of molecular, cell-based or gene therapeutics derived from biological sources or complex biotechnological processes. The principles of preclinical support of pediatric drug development for biopharmaceuticals are similar to those for small molecule pharmaceuticals and in general follow the same regulatory guidances outlined by the Food and Drug Administration and European Medicines Agency. However, many biopharmaceuticals are also inherently different, with limited species specificity or immunogenic potential which may impact the approach taken. This article discusses several key areas to aid in the support of pediatric clinical use, study design considerations for juvenile toxicity studies when they are needed, and current practices to support pediatric drug development based on surveys specifically targeting biopharmaceutical development. © 2011 Wiley-Liss, Inc.


Pouliot L.,Charles River Preclinical Services | Schneider M.,Novartis | Decristofaro M.,Novartis | Samadfam R.,Charles River Preclinical Services | And 2 more authors.
Birth Defects Research Part B - Developmental and Reproductive Toxicology | Year: 2013

BACKGROUND: The timing and duration of letrozole administration was designed to encompass the majority of postnatal development in the rat with the intent of evaluating the potential for a broad range of effects but with emphasis on expected effects on skeletal maturation. METHODS: Sprague-Dawley rats were administered letrozole via oral gavage at doses of 0.003, 0.03, and 0.3 mg/kg/day beginning on postpartum day (PPD) 7 through 91 followed by a 6-week recovery period. Clinical signs, body weight, food consumption, developmental endpoints, bone, ophthalmology, behavioral assessments, clinical/anatomic pathology, toxicokinetics, and reproductive assessments were conducted. RESULTS: Growth (body weight gain and crown-to-rump length) and food consumption were increased in females at ≥0.03 mg/kg/day and decreased in males at ≥0.003 mg/kg/day. Delayed sexual maturation in both sexes and adverse effects on reproductive function occurred at all doses. Effects on bone growth and maturation were noted in both sexes at all doses. Evidence of recovery was noted for males at 0.003 mg/kg/day and females at 0.003 and 0.03 mg/kg/day upon withdrawal of treatment. Histopathological changes in the pituitary-adrenal-gonadal axis correlated with effects on reproductive function. CONCLUSIONS: The observed effects in juvenile rats were considered predictable and primarily related to the mechanism of action of letrozole upon estrogen synthesis. © 2013 Wiley Periodicals, nc.


Beckman D.,Novartis | Barbeau S.,Charles River Preclinical Services | Mclean L.A.,Novartis | Yan J.-H.,Novartis | Hoffmann P.,Novartis
Birth Defects Research Part B - Developmental and Reproductive Toxicology | Year: 2014

BACKGROUND: Aliskiren is the first orally bioavailable direct renin inhibitor approved for the treatment of hypertension in adults. Juvenile toxicity studies in rats were initiated to support treatment in the pediatric population. METHODS: In Study 1, aliskiren oral administration was initiated on postpartum day (PPD) 14, after nephrogenesis was completed, and continued through PPD 70 at doses of 0, 30, 100, and 300 mg/kg/day. In-life, clinical pathology, anatomic pathology, developmental, behavioral, reproductive, and toxicokinetics evaluations were performed. In Study 2, oral administration was initiated on PPD 8, before completion of nephrogenesis, and continued through PPD 35/36. In-life, clinical pathology, anatomic pathology, developmental, and toxicokinetics evaluations were performed. RESULTS: With dosing initiated on PPD 8, mortality at 100 and 300 mg/kg/day and slightly increased kidney weight at 100 mg/kg/day occurred. Decreased absolute lymphocyte count at 300 mg/kg/day at the end of dosing occurred with dosing initiated on PPD 14. There were clinical signs and transient effects on body weight gains in both studies. There were no changes in other parameters. Systemic exposure was much higher on PPD 8 and 14 compared with adult rats on PPD 64. CONCLUSIONS: All effects produced by aliskiren, including kidney effects, were reversible. Increased exposure in very young animals is considered to be the result of immature drug transporter systems. © 2014 Wiley Periodicals, Inc.


Smith S.Y.,Charles River Preclinical Services | Jolette J.,Charles River Preclinical Services | Chouinard L.,Charles River Preclinical Services | Komm B.S.,Pfizer
Journal of Bone and Mineral Metabolism | Year: 2014

Bazedoxifene (BZA) is a novel selective estrogen receptor modulator in clinical development for the prevention and treatment of postmenopausal osteoporosis. This preclinical study evaluated the efficacy and safety of BZA in preventing ovariectomy (OVX)-induced bone loss in aged cynomolgus monkeys. Animals (18 per group) underwent OVX and were administered BZA (0.2, 0.5, 1, 5, or 25 mg/kg/day) or vehicle, or were sham-operated and administered vehicle, by daily oral gavage for 18 months. Biochemical markers of bone turnover were assessed at 6, 12, and 18 months, along with bone densitometry using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Animals were killed after 18 months. Uterine and pituitary weights were determined, and histomorphometric and biomechanical measurements were performed. OVX vehicle controls showed increases in bone turnover associated with cancellous and cortical bone osteopenia (in vivo), and slight decreases (not statistically significant) in biomechanical strength parameters at the lumbar spine and femoral neck. BZA partially preserved cortical and cancellous bone mass by preventing the OVX-induced increases in bone turnover. Although the response was often similar among BZA-treated groups, the strongest efficacy was generally seen at 25 mg/kg/day. Treatment with BZA did not adversely affect measures of bone strength and was well tolerated; there was no evidence of uterotrophic activity, mammary tissue was unaffected, and there were no adverse effects on plasma lipids. Treatment of ovariectomized animals with BZA partially prevented changes in bone remodeling that correlated with increases in bone mineral density, while maintaining bone strength and a favorable safety profile. © 2014 The Japanese Society for Bone and Mineral Research and Springer Japan.


Komm B.S.,Pfizer | Vlasseros F.,Charles River Preclinical Services | Samadfam R.,Charles River Preclinical Services | Chouinard L.,Charles River Preclinical Services | Smith S.Y.,Charles River Preclinical Services
Bone | Year: 2011

A novel approach to menopausal therapy is the tissue selective estrogen complex (TSEC) that partners bazedoxifene (BZA) with conjugated estrogens (CE). We examined the effects of daily treatment with BZA 0.3. mg/kg, CE 2.5. mg/kg, or combined BZA/CE (BZA 0.1, 0.3, or 1.0. mg/kg with CE 2.5. mg/kg) over 12. months on bone mass, bone architecture and strength, and biochemical markers of bone turnover in ovariectomized (OVX) female Sprague-Dawley rats vs OVX control rats. Total cholesterol and uterine weights were also evaluated. All BZA/CE dose combinations prevented ovariectomy-induced increases in bone turnover and significantly increased bone mineral density (BMD) at the lumbar spine, proximal femur, and tibia compared with OVX controls. All BZA/CE doses evaluated also prevented many of the ovariectomy-induced changes of the static and dynamic parameters of the cortical compartment of the tibia and the cancellous compartment of the L1 and L2 vertebrae. All BZA/CE doses increased biomechanical strength at the lumbar spine (L4) compared with OVX animals. The co-administration of BZA 0.3 and 1.0. mg/kg/day with CE 2.5. mg/kg/day showed a dose-dependent reduction in uterine wet weight compared with administration of CE alone. All BZA/CE doses significantly lowered total cholesterol levels compared with OVX controls. In conclusion, 12. months of treatment with BZA/CE in OVX rats effectively maintained BMD, bone microstructure, and bone quality; and the pairing of BZA with CE prevented CE-induced uterine stimulation. © 2011 Elsevier Inc.


Smith S.Y.,Charles River Preclinical Services | Jolette J.,Charles River Preclinical Services | Chouinard L.,Charles River Preclinical Services | Komm B.S.,Charles River Preclinical Services
Journal of bone and mineral metabolism | Year: 2015

Bazedoxifene (BZA) is a novel selective estrogen receptor modulator in clinical development for the prevention and treatment of postmenopausal osteoporosis. This preclinical study evaluated the efficacy and safety of BZA in preventing ovariectomy (OVX)-induced bone loss in aged cynomolgus monkeys. Animals (18 per group) underwent OVX and were administered BZA (0.2, 0.5, 1, 5, or 25 mg/kg/day) or vehicle, or were sham-operated and administered vehicle, by daily oral gavage for 18 months. Biochemical markers of bone turnover were assessed at 6, 12, and 18 months, along with bone densitometry using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Animals were killed after 18 months. Uterine and pituitary weights were determined, and histomorphometric and biomechanical measurements were performed. OVX vehicle controls showed increases in bone turnover associated with cancellous and cortical bone osteopenia (in vivo), and slight decreases (not statistically significant) in biomechanical strength parameters at the lumbar spine and femoral neck. BZA partially preserved cortical and cancellous bone mass by preventing the OVX-induced increases in bone turnover. Although the response was often similar among BZA-treated groups, the strongest efficacy was generally seen at 25 mg/kg/day. Treatment with BZA did not adversely affect measures of bone strength and was well tolerated; there was no evidence of uterotrophic activity, mammary tissue was unaffected, and there were no adverse effects on plasma lipids. Treatment of ovariectomized animals with BZA partially prevented changes in bone remodeling that correlated with increases in bone mineral density, while maintaining bone strength and a favorable safety profile.


Perin E.C.,Texas Heart Institute | Silva G.V.,Texas Heart Institute | Vela D.C.,Texas Heart Institute | Zheng Y.,Texas Heart Institute | And 7 more authors.
Journal of Cardiac Failure | Year: 2011

Background: Hepatocyte growth factor (HGF) may stimulate angiogenesis. We examined the safety and therapeutic potential of the HGF plasmid (VM202) in pigs with chronic myocardial ischemia. Methods and Results: We delivered VM202 or vehicle transendocardially to 4 groups of pigs: vehicle control (n = 9); high-dose VM202 (n = 9); low-dose VM202 (n = 3); and normal control (no ischemia; n = 1). Pigs were killed 3, 30, and 60 days after injection. No adverse events were associated with VM202 treatment or delivery. Quantitative polymerase chain reaction indicated that heart injection sites had the highest levels of VM202 (day 3), which became almost undetectable by 30-60 days. Most nontarget tissues showed clearance of VM202 plasmid by day 30. Control and VM202-treated pigs did not differ in global functional data. Dobutamine-stressed myocardial-contrast echocardiogram suggested that VM202 may help preserve microvascular perfusion at 30 days; reperfusion velocity in ischemic myocardium decreased significantly in control (baseline to follow-up, 5.1 ± 1.9 to 2.7 ± 1.0; P = .031) but not in VM202 groups (high-dose: 3.1 ± 1.1 vs 3.1 ± 1.5 [P = .511]; low-dose: 3.8 ± 1.1 vs 3.9 ± 1.5 [P = .559]). Linear local shortening increased significantly from day 0 to 30 in VM202-treated versus control pigs (5.0 ± 4.7% vs 9.2 ± 7.5% vs 0.9 ± 5.8% [high-dose, low-dose, control, respectively]; P = .021). Conclusions: Transendocardial delivery of VM202 was safe and may help to preserve microcirculatory perfusion and improve wall motion. © 2011 Elsevier Inc. All rights reserved.


PubMed | Charles River Preclinical Services
Type: Journal Article | Journal: Birth defects research. Part B, Developmental and reproductive toxicology | Year: 2013

The timing and duration of letrozole administration was designed to encompass the majority of postnatal development in the rat with the intent of evaluating the potential for a broad range of effects but with emphasis on expected effects on skeletal maturation.Sprague-Dawley rats were administered letrozole via oral gavage at doses of 0.003, 0.03, and 0.3 mg/kg/day beginning on postpartum day (PPD) 7 through 91 followed by a 6-week recovery period. Clinical signs, body weight, food consumption, developmental endpoints, bone, ophthalmology, behavioral assessments, clinical/anatomic pathology, toxicokinetics, and reproductive assessments were conducted.Growth (body weight gain and crown-to-rump length) and food consumption were increased in females at 0.03 mg/kg/day and decreased in males at 0.003 mg/kg/day. Delayed sexual maturation in both sexes and adverse effects on reproductive function occurred at all doses. Effects on bone growth and maturation were noted in both sexes at all doses. Evidence of recovery was noted for males at 0.003 mg/kg/day and females at 0.003 and 0.03 mg/kg/day upon withdrawal of treatment. Histopathological changes in the pituitary-adrenal-gonadal axis correlated with effects on reproductive function.The observed effects in juvenile rats were considered predictable and primarily related to the mechanism of action of letrozole upon estrogen synthesis.

Loading Charles River Preclinical Services collaborators
Loading Charles River Preclinical Services collaborators