Charles River Laboratories Preclinical Services

Horsham, PA, United States

Charles River Laboratories Preclinical Services

Horsham, PA, United States
SEARCH FILTERS
Time filter
Source Type

Brannen K.C.,Charles River Laboratories Preclinical Services | Fenton S.E.,National Health Research Institute | Hansen D.K.,U.S. Food and Drug Administration | Harrouk W.,U.S. Food and Drug Administration | And 2 more authors.
Birth Defects Research Part B - Developmental and Reproductive Toxicology | Year: 2011

In April 2009, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute's (HESI) Developmental and Reproductive Toxicology Technical Committee held a two-day workshop entitled "Developmental Toxicology-New Directions." The third session of the workshop focused on ways to refine animal studies to improve relevance and predictivity for human risk. The session included five presentations on: (1) considerations for refining developmental toxicology testing and data interpretation; (2) comparative embryology and considerations in study design and interpretation; (3) pharmacokinetic considerations in study design; (4) utility of genetically modified models for understanding mode-of-action; and (5) special considerations in reproductive testing for biologics. The presentations were followed by discussion by the presenters and attendees. Much of the discussion focused on aspects of refining current animal testing strategies, including use of toxicokinetic data, dose selection, tiered/triggered testing strategies, species selection, and use of alternative animal models. Another major area of discussion was use of non-animal-based testing paradigms, including how to define a "signal" or adverse effect, translating in vitro exposures to whole animal and human exposures, validation strategies, the need to bridge the existing gap between classical toxicology testing and risk assessment, and development of new technologies. Although there was general agreement among participants that the current testing strategy is effective, there was also consensus that traditional methods are resource-intensive and improved effectiveness of developmental toxicity testing to assess risks to human health is possible. This article provides a summary of the session's presentations and discussion and describes some key areas that warrant further consideration. © 2011 Wiley Periodicals, Inc.


Dahms I.,DSM Nutritional Products Inc. | Beilstein P.,DSM Nutritional Products Inc. | Bonnette K.,Charles River Laboratories Preclinical Services | Salem N.,DSM Nutritional Products Inc.
Food and Chemical Toxicology | Year: 2016

DHA Ethyl Ester (DHA-EE) is a 90% concentrated ethyl ester of docosahexaenoic acid manufactured from the microalgal oil. The objective of the 9-month study was to evaluate safety of DHA-EE administered to beagle dogs at dose levels 150, 1000 and 2000 mg/kg bw/day by oral gavage and to determine reversibility of any findings after a 2-month recovery period. DHA-EE was well tolerated at all doses. There were observations of dry flaky skin with occasional reddened areas at doses ≥1000 mg/kg bw/day. These findings lacked any microscopic correlate and were no longer present after the recovery period. There were no toxicologically relevant findings in body weights, body weight gains, food consumption, ophthalmological examinations, and ECG measurements. Test article-related changes in hematology parameters were limited to decreases in reticulocyte count in the high-dose males and considered non-adverse. In clinical chemistry parameters, dose-related decreases in cholesterol and triglycerides levels were observed at all doses in males and females and attributed to the known lipid-lowering effects of DHA. There were no effects on other clinical chemistry, urinalysis or coagulation parameters. There were no abnormal histopathology findings attributed to test article. The No-Observable-Adverse-Effect Level of DHA-EE was established at 2000 mg/kg bw/day for both genders. © 2016 Elsevier Ltd.


PubMed | Charles River Laboratories Preclinical Services and DSM Nutritional Products Inc.
Type: | Journal: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association | Year: 2016

DHA Ethyl Ester (DHA-EE) is a 90% concentrated ethyl ester of docosahexaenoic acid manufactured from the microalgal oil. The objective of the 9-month study was to evaluate safety of DHA-EE administered to beagle dogs at dose levels 150, 1000 and 2000mg/kgbw/day by oral gavage and to determine reversibility of any findings after a 2-month recovery period. DHA-EE was well tolerated at all doses. There were observations of dry flaky skin with occasional reddened areas at doses 1000mg/kgbw/day. These findings lacked any microscopic correlate and were no longer present after the recovery period. There were no toxicologically relevant findings in body weights, body weight gains, food consumption, ophthalmological examinations, and ECG measurements. Test article-related changes in hematology parameters were limited to decreases in reticulocyte count in the high-dose males and considered non-adverse. In clinical chemistry parameters, dose-related decreases in cholesterol and triglycerides levels were observed at all doses in males and females and attributed to the known lipid-lowering effects of DHA. There were no effects on other clinical chemistry, urinalysis or coagulation parameters. There were no abnormal histopathology findings attributed to test article. The No-Observable-Adverse-Effect Level of DHA-EE was established at 2000mg/kgbw/day for both genders.


Wang L.,Millennium Pharmaceuticals Inc. | Wang L.,Millennium: The Takeda Oncology Company | Wang L.,Glaxosmithkline | Jenkins T.J.,Millennium Pharmaceuticals Inc. | And 12 more authors.
Thorax | Year: 2013

Background: Expression of the T-cell-associated chemokine receptor CCR8 and its ligand CCL1 have been demonstrated to be elevated in patients with asthma. CCR8 deficiency or inhibition in models of allergic airway disease in mice resulted in conflicting data. Objective: To investigate the effects of a selective small molecule CCR8 inhibitor (ML604086) in a primate model of asthma. Methods: ML604086 and vehicle were administered by intravenous infusion to 12 cynomolgus monkeys during airway challenge with Ascaris suum. Samples were collected throughout the study to measure pharmacokinetics (PK) and systemic CCR8 inhibition, as well as inflammation, T helper 2 (Th2) cytokines and mucus in bronchoalveolar lavage (BAL). Airway resistance and compliance were measured before and after allergen challenge, and in response to increasing concentrations of methacholine. Results: ML604086 inhibited CCL1 binding to CCR8 on circulating T-cells>98% throughout the duration of the study. However, CCR8 inhibition had no significant effect on allergen-induced BAL eosinophilia and the induction of the Th2 cytokines IL-4, IL-5, IL-13 and mucus levels in BAL. Changes in airway resistance and compliance induced by allergen provocation and increasing concentrations of methacholine were also not affected by ML604086. Conclusions: These results clearly demonstrate a dispensable role for CCR8 in ameliorating allergic airway disease in atopic primates, and suggest that strategies other than CCR8 antagonism should be considered for the treatment of asthma.


Takeda S.,Chugai Pharmaceutical Co. | Smith S.Y.,Musculoskeletal Research | Tamura T.,Chugai Pharmaceutical Co. | Saito H.,Chugai Pharmaceutical Co. | And 5 more authors.
Calcified Tissue International | Year: 2015

The purpose of this study is to estimate the efficacy of eldecalcitol (1α, 25-Dihydroxy-2β- (3-hydroxypropyloxy) vitamin D3; ELD) on bone metabolism after long-term administration. Six-month-old Wistar– Imamichi rats were ovariectomized (OVX) and administered ELD orally at doses of 7.5, 15, or 30 ng/kg daily. Bone mineral density (BMD), urinary excretion of deoxypyridinoline (DPD), a bone resorption marker, and serum total alkaline phosphatase (ALP), a surrogate marker of bone formation, were assessed after 3, 6, and 12 months of treatment. After 12 months of treatment, the biomechanical strength of the L4 lumbar vertebra and femoral shaft was measured, and bone histomorphometry was performed on the L3 lumbar vertebra and the tibia diaphysis. ELD prevented OVX-induced decreases in BMD of the lumbar vertebrae and femur throughout the treatment period. ELD significantly suppressed OVX-induced increases in urinary DPD excretion throughout the treatment period with minimal effects on ALP. OVX resulted in significant decreases in ultimate load and stiffness of the L4 lumbar vertebra and femoral shaft, and ELD significantly prevented the reduction in these biomechanical parameters. Bone histomorphometry at the L3 lumbar vertebra revealed that OVX induced increases in bone resorption parameters (osteoclast surface and osteoclast number) and bone formation parameters (osteoblast surface, osteoid surface, and bone formation rate), and ELD suppressed these parameters after 12 months treatment. Activation frequency, which was elevated in the OVX/vehicle group, was significantly suppressed to baseline levels in ELD-treated groups, indicating that ELD maintained bone turnover at a normal level. ELD also prevented OVX-induced deterioration of microstructure in trabecular and cortical bone. These results indicated that long-term treatment of OVX rats with ELD suppressed bone turnover, and prevented OVX-induced bone loss, deterioration of bone microstructure, and reduction in bone biomechanical strength. © Springer Science+Business Media New York 2014.


Karaman S.,DuPont Pioneer | Barnett Jr. J.,Charles River Laboratories Preclinical Services | Sykes G.P.,DuPont Company | Delaney B.,DuPont Pioneer
Food and Chemical Toxicology | Year: 2011

We investigated the systemic effects of subchronic dietary exposure to NAA in Sprague Dawley® rats. NAA was added to the diet at different concentrations to deliver target doses of 100, 250 and 500. mg/kg of body weight/day and was administered for 90 consecutive days. All rats (10/sex/group) survived until scheduled sacrifice. No diet-related differences in body weights, feed consumption and efficiency, clinical signs, or ophthalmologic findings were observed. No biologically significant differences or adverse effects were observed in functional observation battery (FOB) and motor activity evaluations, hematology, coagulation, clinical chemistry, urinalysis, organ weights, or gross pathology evaluations that were attributable to dietary exposure to NAA. Treatment-related increased incidence and degree of acinar cell hypertrophy in salivary glands was observed in both male and female rats in the high dose group. Because there was no evidence of injury or cytotoxicity to the salivary glands, this finding was not considered to be an adverse effect. Based on these results and the actual average doses consumed, the no-observed-adverse-effect-levels (NOAEL) for systemic toxicity from subchronic dietary exposure to NAA were 451.6 and 490.8. mg/kg of body weight/day for male and female Sprague Dawley® rats, respectively. © 2010 Elsevier Ltd.


Karaman S.,DuPont Pioneer | Barnett J.,Charles River Laboratories Preclinical Services | Sykes G.P.,DuPont Company | Hong B.,DuPont Pioneer | Delaney B.,DuPont Pioneer
Food and Chemical Toxicology | Year: 2011

N-acetyl-l-aspartic acid (NAA) is a component of the mammalian central nervous system (CNS) that has also been identified in a number of foods. This paper reports the outcome of a reproductive toxicology study conducted with NAA in Sprague-Dawley® rats. NAA was added to diets at target doses of 100, 250 and 500. mg/kg of body weight/day and administered for two consecutive generations. A carrier control group was administered diet with no added NAA and a comparative control group was given aspartate (ASP), the constituent amino acid of NAA, at a target dose of 500. mg/kg of body weight/day. The study evaluated OECD 416 reproductive performance variables and additional segments to assess potential developmental effects, neurobehavioural and ophthalmologic function, and the concentrations of NAA or ASP in brain and plasma. No biologically significant differences were observed in any reproductive response variables, neurobehavioural tests, ophthalmologic examinations, body weights, feed consumption, or organ weights. Further, no test substance related mortalities or adverse clinical, neurohistopathologic or histopathologic findings were observed. Under the conditions of this study, the highest target dose of NAA, 500. mg/kg of body weight/day, represents the no-observed-adverse-effect-level (NOAEL) for reproductive and systemic toxicity, and neurotoxicity for Sprague-Dawley® rats. © 2011 Elsevier Ltd.


Plomley J.B.,Charles River Laboratories Preclinical Services | Jackson R.L.,Ausio Pharmaceuticals LLC | Schwen R.J.,Ausio Pharmaceuticals LLC | Greiwe J.S.,Ausio Pharmaceuticals LLC
Journal of Pharmaceutical and Biomedical Analysis | Year: 2011

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for the determination of unconjugated and total (conjugated plus unconjugated) S-equol in human plasma and urine were developed and validated. The separation of R and S enantiomers was achieved with a Chiracel OJ-H column operated in a normal phase mode using ethanol/hexane mobile phase components. Ionization of S-equol by negative ion electrospray generated the [M-H] - ion whose response was augmented by post-column addition of ammonium hydroxide. A triple stage quadrupole mass spectrometer was used to measure the ion current generated from the dissociative transitions m/z 241→m/z 121 (S-equol) and m/z 245→m/z 123 (equol-d 4). The determination of total S-equol included an additional deconjugation step involving incubation of the sample with sulfatase and glucuronidase. Average recovery for both unconjugated and total S-equol was 85% with no observable matrix effects. Linearity was established for unconjugated S-equol from 0.025ng/mL to 10ng/mL (plasma) and 0.20ng/mL to 200ng/mL (urine). The average coefficient of variation and accuracy per occasion was within ±15% of the theoretical concentration of S-equol. The method was used to measure the pharmacokinetics of S-equol in human plasma after an oral administration of a single 20mg dose of S-equol to three normal healthy volunteers. © 2011 Elsevier B.V.


PubMed | Amgen Inc., University of Calgary and Charles River Laboratories Preclinical Services
Type: | Journal: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research | Year: 2016

Romosozumab (Romo), a humanized sclerostin antibody, is a bone-forming agent under development for treatment of osteoporosis. To examine the effects of Romo on bone quality, mature cynomolgus monkeys (cynos) were treated 4 months post- ovariectomy (OVX) with vehicle, 3mg/kg, or 30mg/kg Romo for 12 months, or with 30mg/kg Romo for 6 months followed by vehicle for 6 months (30/0). Serum bone formation markers were increased by Romo during the first 6 months, corresponding to increased cancellous, endocortical, and periosteal bone formation in rib and iliac biopsies at months 3 and 6. Dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD) was increased by 14% to 26% at the lumbar spine and proximal femur at month 12, corresponding to significant increases in bone strength at 3 and 30mg/kg in lumbar vertebral bodies and cancellous cores, and at 30mg/kg in the femur diaphysis and neck. Bone mass remained positively correlated with strength at these sites, with no changes in calculated material properties at cortical sites. These bone-quality measures were also maintained in the 30/0 group, despite a gradual loss of accrued bone mass. Normal bone mineralization was confirmed by histomorphometry and ash analyses. At the radial diaphysis, a transient, reversible 2% reduction in cortical BMD was observed with Romo at month 6, despite relative improvements in bone mineral content (BMC). High-resolution pQCT confirmed this decline in cortical BMD at the radial diaphysis and metaphysis in a second set of OVX cynos administered 3mg/kg Romo for 6 months. Radial diaphyseal strength was maintained and metaphyseal strength improved with Romo as estimated by finite element modeling. Decreased radial cortical BMD was a consequence of increased intracortical remodeling, with no increase in cortical porosity. Romo resulted in marked improvements in bone mass, architecture, and bone strength, while maintaining bone quality in OVX cynos, supporting its bone efficacy and safety profile. 2016 American Society for Bone and Mineral Research.


PubMed | Charles River Laboratories Preclinical Services and Galderma R&D
Type: Journal Article | Journal: Photochemistry and photobiology | Year: 2015

Brimonidine at 0.18%, 1% and 2% concentrations applied topically in hairless mice significantly decreased tumor burden and incidences of erythema, flaking, wrinkling and skin thickening induced by UVR. The unbiased median week to tumor 1 mm was increased by the 1% and 2% concentrations. The tumor yield was reduced by all concentrations at week 40 for all tumor sizes but the 4 mm tumors with the 0.18% concentration. At week 52, the tumor yield was reduced for all tumor sizes and all brimonidine concentrations. The tumor incidence was reduced by all concentrations at week 40 for all tumor sizes, but the 4 mm tumor with the 0.18% concentration and at week 52 for all tumor sizes with the 1% and 2% concentrations and with the 0.18% concentration only for the 4 mm tumors. Reductions in 4 mm tumor incidences compared to the vehicle control group were 54%, 91% and 86% by week 52 for the 0.18%, 1% and 2% concentrations, respectively. Brimonidine at 2% applied 1 h before or just after UVB irradiation on hairless mice decreased epidermal hyperplasia by 23% and 32% and epithelial cell proliferation by 59% and 64%, respectively, similar to an epidermal growth factor receptor (EGFR) inhibitor.

Loading Charles River Laboratories Preclinical Services collaborators
Loading Charles River Laboratories Preclinical Services collaborators