Time filter

Source Type

Sun N.-K.,Chang Gung University | Huang S.-L.,Chang Gung University | Lu H.-P.,Chang Gung University | Chang T.-C.,Chang Gung Memorial Hospital Linkou Medical Center | Chao C.C.-K.,Chang Gung University
Oncotarget | Year: 2015

A systematic analysis of the genes involved in taxol resistance (txr) has never been performed. In the present study, we created txr ovarian carcinoma cell lines to identify the genes involved in chemoresistance. Transcriptome analysis revealed 1,194 overexpressed genes in txr cells. Among the upregulated genes, more than 12 cryptic transcription factors were identified using MetaCore analysis (including AR, C/EBPß, ER, HNF4a, c-Jun/AP-1, c-Myc, and SP-1). Notably, individual silencing of these transcription factors (except HNF4α)sensitized txr cells to taxol. The androgen receptor (AR) and its target genes were selected for further analysis. Silencing AR using RNA interference produced a 3-fold sensitization to taxol in txr cells, a response similar to that produced by silencing abcb1. AR silencing also downregulated the expression of prominent txr gene candidates (including abcb1, abcb6, abcg2, bmp5, fat3, fgfr2, h1f0, srcrb4d, and tmprss15). In contrast, AR activation using the agonist DHT upregulated expression of the target genes. Individually silencing seven out of nine (78%) AR-regulated txr genes sensitized txr cells to taxol. Inhibition of AKT and JNK cellular kinases using chemical inhibitors caused a dramatic suppression of AR expression. These results indicate that the AR represents a critical driver of gene expression involved in txr.

Ye J.-J.,Chang Gung Memorial Hospital | Huang C.-T.,Chang Gung Memorial Hospital | Shie S.-S.,Chang Gung Memorial Hospital | Huang P.-Y.,Chang Gung Memorial Hospital | And 4 more authors.
PLoS ONE | Year: 2010

Background: Multidrug resistant Acinetobacter baumannii (MDRAB) is an important nosocomial pathogen usually susceptible to carbapenems; however, growing number of imipenem resistant MDRAB (IR-MDRAB) poses further clinical challenge. The study was designed to identify the risk factors for appearance of IR MDRAB on patients formerly with imipenem susceptible MDRAB (IS-MDRAB) and the impact on clinical outcomes. Methodology/Principal Findings: A retrospective case control study was carried out for 209 consecutive episodes of ISMDRAB infection or colonization from August 2001 to March 2005. Forty-nine (23.4%) episodes with succeeding clinical isolates of IR-MDRAB were defined as the cases and 160 (76.6%) with all subsequent clinical isolates of IS-MDRAB were defined as the controls. Quantified antimicrobial selective pressure, "time at risk", severity of illness, comorbidity, and demographic data were incorporated for multivariate analysis, which revealed imipenem or meropenem as the only significant independent risk factor for the appearance of IR-MDRAB (adjusted OR, 1.18; 95% CI, 1.09 to 1.27). With selected cases and controls matched to exclude exogenous source of IR-MDRAB, multivariate analysis still identified carbapenem as the only independent risk factor (adjusted OR, 1.48; 95% CI, 1.14 to 1.92). Case patients had a higher crude mortality rate compared to control patients (57.1% vs. 31.3%, p = 0.001), and the mortality of case patients was associated with shorter duration of ''time at risk'', i.e., faster appearance of IR-MDRAB (adjusted OR, 0.9; 95% CI, 0.83 to 0.98). Conclusions/Significance: Judicious use of carbapenem with deployment of antibiotics stewardship measures is critical for reducing IR-MDRAB and the associated unfavorable outcome. © 2010 Ye et al.

Liang C.-C.,Linkou Medical Center | Liang C.-C.,Chang Gung University | Liu H.-L.,University of Texas M. D. Anderson Cancer Center | Chang S.-D.,Linkou Medical Center | And 4 more authors.
PLoS ONE | Year: 2016

Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO). Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment) caused less infarction size than those infused after MCAO (post-treatment) on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF. © 2016 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Wu H.-M.,University of British Columbia | Wu H.-M.,Chang Gung Memorial Hospital Linkou Medical Center | Wu H.-M.,Chang Gung University | Schally A.V.,University of Miami | And 4 more authors.
Cancer Letters | Year: 2010

The growth hormone-releasing hormone (GHRH) antagonists have been shown to inhibit growth of human cancer cells, but the underlying molecular mechanisms and their actions have not been fully investigated. In this study, we first showed that GHRH-R splice variant 1 (SV1) was expressed in two human endometrial cancer cell lines, Ishikawa and ECC-1. By using MTT assay, immunoblotting for cleaved caspase-3 and TUNEL assays, we found that cell growth inhibition and apoptosis were induced in GHRH antagonist, JMR-132-treated cells by activating PKCδ and could be inhibited by treatment with PKC inhibitor, GF109203X. In addition, activation and protein expression of p53 as well as the expression of its downstream effector, p21, were increased by JMR-132 treatment. Moreover, JMR-132-induced p53 and p21 expression were diminished by treatment with PKC inhibitor. Knockdown of endogenous p53 and p21 by siRNAs abolished the JMR-132-induced cell growth inhibition and apoptosis. This study demonstrates a novel mechanism in which GHRH antagonist-induced cell growth inhibition and apoptosis through PKCδ-mediated activation of p53/p21 in human endometrial cancer cells. These findings may suggest the feasibility of GHRH antagonists as a therapeutic approach for human cancer. © 2010 Elsevier Ireland Ltd.

Chen I.-J.,Chang Gung Memorial Hospital Linkou Medical Center | Yen C.-F.,Chang Gung Memorial Hospital Linkou Medical Center | Yen C.-F.,Molecular Imaging Center | Lin K.-J.,Molecular Imaging Center | And 5 more authors.
Reproductive Sciences | Year: 2011

Human papillomavirus (HPV) infects large numbers of women worldwide and is present in more than 99% of all cervical cancer. TC-1 cell is a cell line with high expression of E7 antigen of HPV type 16 and its cell lysate has been demonstrated as an ideal inducer of E7-specific, antitumor immunity. OK-432 (Picibanil), a penicillin-killed Streptococcus pyogenes, has been reported with potent immunomodulation properties in cancer treatment by stimulating the maturation of dendritic cells (DCs) and secretion of Th-1 type cytokines. The current study demonstrated that a protocol to immunize the C57BL/6 mice with OK-432 followed by treatment with TC-1 lysate can generate markedly increased immune responses of E7-specific CD4+ T cells and a moderate increase of natural killer (NK) cell, as well as a satisfactorily protective and therapeutic antitumor effect by triggering the DCs to prime T cells. Depletion of lymphocyte subset in vivo suggested that the antitumor effects could be dominantly executed by CD8+ T cells and followed by NK cells, and both of these reactions were induced by the generation of robust E7-specific CD4+ T helper cell response. These findings warrant OK-432 combination with tumor-lysate as an effective and safe vaccine in future clinical application of cervical cancer. © The Author(s) 2011.

Discover hidden collaborations