Fresno, CA, United States
Fresno, CA, United States

Time filter

Source Type

Patent
Champion Technologies Inc. | Date: 2013-12-17

Functionalized alpha-hydroxy alkyl ethers have been found to perform as non (or anti-) scaling hydrogen sulfide scavengers. A method of scavenging hydrogen sulfide includes contacting a fluid containing hydrogen sulfide with a treatment fluid including a functionalized alpha-hydroxy alkyl ether. Accordingly, the alpha-hydroxy alkyl ether reacts with the hydrogen sulfide to reduce the amount of hydrogen sulfide in the fluid. The functionalized alpha-hydroxy alkyl ether is functionalized with a phosphate group, phosphonate group, sulfate group, or sulfonate group. A broad range of alpha-hydroxy alkyl ethers are disclosed.


Patent
Champion Technologies Inc. | Date: 2013-12-17

A method of performing a squeeze treatment comprises pumping a treatment fluid under pressure through a wellbore into a subterranean formation, wherein the treatment fluid includes a hydrogen sulfide scavenging compound that adsorbs onto the subterranean formation in a region around the wellbore. Production fluids are then allowed to flow from the subterranean formation into the wellbore, wherein the production fluids contact the adsorbed hydrogen sulfide scavenging compound as the production fluids flow through the region around the wellbore, and wherein the production fluids contain hydrogen sulfide that reacts with the hydrogen sulfide scavenging compound to reduce an amount of hydrogen sulfide in the production fluids before the production fluids flow into the wellbore.


Patent
Champion Technologies Inc. | Date: 2013-12-17

Alpha-hydroxy alkyl esters have been found to perform as hydrogen sulfide scavengers. A method of scavenging hydrogen sulfide includes contacting a fluid containing hydrogen sulfide with a treatment fluid including an alpha-hydroxy alkyl ester. Accordingly, the alpha-hydroxy alkyl ester reacts with the hydrogen sulfide to reduce the amount of hydrogen sulfide in the fluid. A broad range of alpha-hydroxy alkyl esters are disclosed.


An effective stress corrosion cracking (SCC) inhibiting amount of a corrosion inhibitor is added into a blend of fuel and ethanol that contacts a metal, wherein the corrosion inhibitor is an organic acid selected from citric acid, ascorbic acid, succinic acid, pyruvic acid, maleic acid, oxaloacetic acid, oxalosuccinic acid, ketoglutaric acid, isocitric acid, malic acid, aconitic acid, fumaric acid, isomers of these organic acids, and a combination thereof. For example, the corrosion inhibitors inhibit stress corrosion cracking of pipeline grade metal pipe at ethanol concentrations greater than fifteen percent. In one embodiment, the corrosion inhibitor is added into a blend of fuel and ethanol flowing through a pipeline at a plurality of injection points spaced apart along the length of the pipeline. In one option, the corrosion inhibitor is ammoniated to form the ammonium salt of the organic acid. In another option, the foregoing corrosion inhibitors are used in combination with one or more conventional corrosion inhibitors in an amount that is effective to inhibit general corrosion.


Patent
Champion Technologies Inc. | Date: 2012-02-17

A thermal phase separation simulator and method for testing chemicals is disclosed. The simulator comprises a circular block heater carousel mounted for rotation on a stage. The carousel includes a circular array of test wells for receiving a plurality of test bottles, a plurality of heating elements and thermocouples disposed between the wells. Each well has an illumination port and a vertical slit to the outside to allow visual observation or imaging of a vertical swatch of the bottle. An illumination source aligns with the illumination port of each well in response to rotation of the carousel. The method includes adding a mixed phase fluid to a plurality of bottles, adding a chemical agent to each bottle, and simulating a thermal phase separation. Images of the fluid in each bottle are captured and analyzed to determine the performance of the one or more chemical agents.


Patent
Champion Technologies Inc. | Date: 2013-05-15

An emulsion breaker composition, a method of making the emulsion breaker, and method of breaking an emulsion are disclosed. In one method, an emulsion is contacted with an effective amount of an emulsion breaker composition. The emulsion breaker is a linear or branched polymer having at least one branch, wherein each branch has a first polymer block having a backbone including a plurality of ester groups and a second polymer block including an alkoxylate, and wherein at least two of the ester groups are connected by a CR1R2 group. The emulsion breakers are preferably formed by reacting a polyol with a cyclic ester monomer in the presence of a first catalyst to form an intermediate polymer having a plurality of branches, wherein each branch has a backbone including a plurality of ester groups, and then reacting the intermediate polymer with at least one alkylene oxide species in the presence of a second catalyst to form an alkoxylate block on each branch.


Air and ammonia gas are introduced into a subterranean formation during the in-situ combustion to increase the mobility of hydrocarbons in a subterranean formation and facilitate recovery of the hydrocarbons from the subterranean formation. The air supports in-situ combustion of a portion of the hydrocarbon within the subterranean formation to form water and establish a combustion front. The ammonia gas contacts the hydrocarbons ahead of the combustion front and reacts in-situ with naphthenic acid in the hydrocarbon to form a surfactant. The hydrocarbons, water and surfactant then form an oil-in-water emulsion that drains more freely through the formation. A production well, in fluid communication with the hydrocarbons ahead of the combustion front, may be used to remove the oil-in-water emulsion from the subterranean formation.


Patent
Champion Technologies Inc. | Date: 2013-03-20

A subsea antifouling sign (40) and a method for mounting such a sign (40)on a structure (52) to be located subsea. The sign (40) comprises a body of an antifouling material, and a first surface of the body has indicia or markings thereon. An adhesive layer (44) or coating is provided on a second opposing surface, and a protective lining (46) is located on the adhesive layer or coating. The method comprises removing the protective lining (46) from the adhesive layer (44) or coating; and attaching the subsea antifouling sign (40) to the structure (52) by adhering the adhesive layer (44) or coating to a surface of the structure (52).


Patent
Champion Technologies Inc. | Date: 2012-04-19

Polymeric naphthenate inhibitors are delivered into production fluids to contact mixtures of oil and water, such as in a hydrocarbon producing formation, production equipment, or processing systems. These polymeric naphthenate inhibitors exhibit surface-active properties causing the inhibitors to self-associate at oil-water interfaces and inhibit interactions between organic acids in the oil and cations or cation complexes in water. The large surface area makes these polymers persistent and effective at low concentrations. These compounds also inhibit aggregation of organic acid carboxylate salts that form when pH and pressure conditions are amenable to organic acid ionization. Preferred inhibitors do not form emulsions due to the formation of unstable mixed interface structures that result in coalescence of dispersed droplets. Naphthenate inhibitor dosages less than 100 ppm can effectively inhibit naphthenate salts or other organic acid salts that can form precipitates or emulsions during crude oil production or processing.


Patent
Champion Technologies Inc. | Date: 2016-06-23

A method for increasing the retention of a scale inhibitor within a hydrocarbon producing system is provided. The method includes, the steps of: (i) pre-flushing the system with a liquid; (ii) treating the system with a scale inhibitor; and (iii) over-flushing the system with a composition comprising an ionic polymer and a liquid carrier. The concentration of the ionic polymer in the composition is 5 to 50% wt.

Loading Champion Technologies Inc. collaborators
Loading Champion Technologies Inc. collaborators