Entity

Time filter

Source Type

North Fremantle, Australia

Gardner M.J.,Murdoch University | Cottingham A.,Murdoch University | Hesp S.A.,Murdoch University | Chaplin J.A.,Murdoch University | And 3 more authors.
Reviews in Fisheries Science | Year: 2013

Acanthopagrus butcheri was restocked in an estuary in which it had become depleted. The restocked fish were cultured in 2001 and 2002 using broodstock from that estuary. These fish, whose otoliths had been stained with alizarin complexone, were released into the estuary and their biological performance tracked for seven to eight years. The 2002 cohort, introduced at circa four months old in autumn, survived far better than the 2001 cohort, introduced at circa seven months old in winter, when freshwater discharge peaks and temperatures are low. While restocked fish matured and grew nearly as fast as wild fish, the increase in density was accompanied by a reduced growth of wild fish. Genetic comparisons, using seven microsatellite loci, demonstrated that the expected heterozygosity and relatedness of restocked and wild A. butcheri, which is naturally characterized by low levels of genetic polymorphism, were similar. Although culturing did not demonstrably increase the level of inbreeding, it did result in the loss of some rare alleles. The biological and genetic results, together with the contribution of restocked A. butcheri to the commercial catch for this species in the estuary rising to 62-74% by 2007-2010, demonstrates the efficacy of using restocking to replenish depleted A. butcheri stocks. © 2013 Copyright Taylor and Francis Group, LLC.


Loneragan N.R.,Murdoch University | Jenkins G.I.,Murdoch University | Jenkins G.I.,Challenger Institute of Technology | Taylor M.D.,Murdoch University | And 2 more authors.
Reviews in Fisheries Science | Year: 2013

This article synthesizes information on marine and estuarine release programs in Australia and evaluates potential opportunities for stock enhancement. In Australia, the scale of restocking and stock enhancement programs in marine environments has been low compared with other countries, particularly Japan, China, and the United States. However, since the early 1990s, a number of government and industry organizations have made significant investments in research and development for the release of a variety of species to evaluate the potential of releases to increase the productivity of fisheries. The scale of these research programs has varied from releases of tens of thousands of individuals (abalone Haliotis laevigata, barramundi Lates calcarifer, and mulloway Argyrosomos japonicus), hundreds of thousands (tiger prawns Penaeus esculentus and black bream Acanthopagrus butcheri), and millions (eastern king prawn Penaeus plebejus). These programs, which have shown a strong commitment to the responsible approach to enhancement sensu (Blankenship and Leber, 1995; Lorenzen et al., 2010), have resulted in increased knowledge on the population dynamics and ecology of released species and the development of bio-economic and energetic models to better plan and evaluate releases. Currently, research is continuing in New South Wales (A. japonicus, P. plebejus), Queensland (L. calcarifer), and Western Australia (A. butcheri, H. laevigata). Furthermore, Victoria is developing a plan for releasing juveniles to enhance fisheries in estuarine and marine environments, and South Australia has developed a policy for marine and estuarine stock enhancement. Policies on stock enhancement are being considered for development in New South Wales and Western Australia. These developments in policy and the introduction of fishing license fees in some states have generated renewed interest in initiating release programs in Australia that follow the responsible approach to enhancement. © 2013 Copyright Taylor and Francis Group, LLC.


Le K.T.,Curtin University Australia | Fotedar R.,Curtin University Australia | Partridge G.,Challenger Institute of Technology
Aquaculture Nutrition | Year: 2014

Six dietary treatments were prepared in a 3 × 2 factorial design (unsupplemented or supplemented with Se at 1 or 2 mg kg-1 × supplemented with vitamin E at 40 or 180 mg kg-1) and fed to yellowtail kingfish (Seriola lalandi) for 6 weeks to evaluate the effects of dietary Se and vitamin E on growth performance, immune and antioxidant responses and to investigate the potential interaction between these two micronutrients in this species. The results have revealed significantly interactive effects with positive physiological responses. Se significantly increased weight gain of fish fed diets low in vitamin E, but not high in vitamin E, whereas serum lysozyme activity was significantly improved by Se in diets high in vitamin E, but not low in vitamin E. Moreover, there was evidence of myopathy in fish deficient in both Se and vitamin E, but not single deficiency. There was no significant effect of dietary Se, vitamin E or their interaction on survival, antibody titre, feed intake, feed conversion ratio and fillet proximate composition; however, fillet Se and vitamin E were significantly responsive to dietary Se and vitamin E, respectively, and higher dietary Se intakes produced significantly higher red blood cell glutathione peroxidase activity. © 2013 John Wiley & Sons Ltd.


Le K.T.,Curtin University Australia | Dao T.T.T.,Curtin University Australia | Fotedar R.,Curtin University Australia | Partrigde G.J.,Challenger Institute of Technology
Aquaculture International | Year: 2014

The effects of dietary selenium (Se) and vitamin E and their interaction in the nutrition of yellowtail kingfish, Seriola lalandi, were investigated. Six dietary treatments were prepared in a 3 × 2 factorial arrangement (not supplemented or supplemented with Se at 1 or 2 mg kg-1 × supplemented with vitamin E at 40 or 180 mg kg-1). A group of fish in triplicate were fed one of the six experimental diets for 6 weeks, and their growth performance, haematological and immune responses were measured. The results revealed positively interactive effects between dietary Se and vitamin E in yellowtail kingfish. Se significantly increased weight gain of fish fed diets low in vitamin E, but not high in vitamin E. Simultaneous supplementation of both micronutrients resulted in significant increase in serum bactericidal activity. There was no significant effect of Se or vitamin E on survival, feed intake, feed conversion ratio, haematocrit, white blood cell counts and fillet proximate composition. However, Se and vitamin E contents in fillets were significantly responsive to dietary Se and vitamin E, respectively. The supplemental level of Se at 2 mg kg-1 significantly increased red blood cell counts and haemoglobin concentrations, while lysozyme activity in skin mucus was significantly stimulated by vitamin E. The findings of Se and vitamin E supplementation in this study can be applied to improve growth and health indices of yellowtail kingfish. © 2013 Springer Science+Business Media Dordrecht.


Lymbery A.J.,Murdoch University | Kay G.D.,Murdoch University | Doupe R.G.,Murdoch University | Partridge G.J.,Murdoch University | And 2 more authors.
Science of the Total Environment | Year: 2013

Dryland salinity is a major problem affecting food production from agricultural land in Australia and throughout the world. Although there is much interest in using saline groundwater to grow marine fish on salt-affected farmland, the disposal of nutrient enriched, saline aquaculture effluent is a major environmental problem. We investigated the potential of the salt-tolerant NyPa Forage plant (Distichlis spicata L. Greene var. yensen-4a) to trap nutrients from saline aquaculture effluent and subsequently to provide a fodder crop for livestock. Sub-surface flow wetlands containing NyPa Forage were constructed and their efficacy in removing total nitrogen, ammonia, nitrite/nitrate, total phosphorus and orthophosphate was monitored under different levels of nutrients and salinity. The wetlands removed 60-90% of total nitrogen loads and at least 85% of ammonia, nitrite/nitrate, total phosphorus and orthophosphate loads, with greater efficiency at high nutrient and low salinity levels. The above-ground yield, sodium, crude protein (CP) and in vitro dry matter digestibility (DMD) of NyPa Forage plants were measured after fertilisation with different nutrient levels and cropping at different frequencies. Yield of plants increased with increased nutrient, while nutritive value was greater when nutrients were applied but did not differ among nutrient levels. Yield was not affected by cropping frequency, but nutritive value was greatest when plants were cropped at intervals of 21 or 42days. At optimum nutrient addition and cropping levels, the plants had a mean CP content of 16.7% and an in vitro DMD of 67.6%, equivalent to an energy value of 9.5MJkg-1. Assuming an equivalent fibre content and voluntary food intake as grass hay, and no accumulation of other toxic minerals, these nutritive values would be sufficient for maintenance or moderate liveweight gains in dry adult sheep or cattle. © 2012.

Discover hidden collaborations