Time filter

Source Type

Yokohama-shi, Japan

Esaki M.,ACeva Animal Health | Godoy A.,ACeva Animal Health | Rosenberger J.K.,AviServe LLC | Rosenberger S.C.,AviServe LLC | And 3 more authors.
Avian Diseases | Year: 2013

Newcastle disease (ND) is prevalent worldwide and causes significant clinical and economic losses to the poultry industry. Current vaccine programs using live attenuated vaccines and inactivated vaccines have limitations, and new vaccines with distinct features are needed. To offer an alternative solution to control ND, a turkey herpesvirus vector Newcastle disease vaccine (HVT/ND) expressing the fusion gene of Newcastle disease virus (NDV) has been developed. First, immunogenicity of the HVT/ND was evaluated in specific-pathogen-free layer chickens after vaccination by the in ovo route to 18-day-old embryos or by the subcutaneous route to 1-day-old chicks. Antibodies against NDV were detected at 24 days of age using a commercial NDV enzyme-linked immunosorbent assay (ELISA) kit and the hemagglutination inhibition test. At least 90% of chickens were protected against challenge with velogenic neurotropic NDV Texas GB strain (genotype II; pathotype velogenic) at 4 wk of age, while none of the nonvaccinated, challenged controls were protected from challenge. Second, the age at which a vaccinated chicken elicits an immunologic response to the HVT/ND prepared for this study, and thus is protected from ND virus, was assessed in commercial broiler chickens after in ovo vaccination of 18-day-old embryos. Challenge was conducted using a low-virulence NDV strain (genotype II; pathotype lentogenic) via the respiratory tract each week between 1 and 5 wk of age, in order to mimic the situation in areas where virulent NDV strains do not normally exist and low-virulence strains cause mild respiratory symptoms leading to economic losses. Protection was evaluated by the presence or absence of isolated virus from tracheal swabs at 5 days postchallenge. Partial protection was observed at 3 wk of age, when 6 out of 10 (60%) chickens were protected. Full protection was obtained at 4 and 5 wk of age, when 9 out of 10 (90%) and 10 out of 10 (100%) chickens were protected, respectively. Finally, protection against challenge with virulent Texas GB strain at 19 wk of age was evaluated in commercial female layer chickens vaccinated at 1 day of age with HVT/ND. All of the vaccinated chickens were protected, while all of the challenge controls succumbed to the challenge. Furthermore, anti-NDV antibodies measured by ELISA were maintained through 50 wk of age. © American Association of Avian Pathologists. Source

Gough M.R.,Ceva Animal Health
Cattle Practice | Year: 2010

The reasons for synchronising cattle, such as facilitating fixed time artificial insemination are summarised. Five different protocols are described: double prostaglandin injection (Pre-Synch), gonadotrophin releasing hormone and prostaglandin protocols (Ov-Synch and Co-Synch), standard progesterone-based protocol and multiple synchronisation protocols such as triple synchronisation (3PSynch). Some practical aspects are tabulated and a literature review of comparative efficacy presented. In dairy cows weighted mean pregnancy rates were 60% for progesterone protocols, 56% for Pre-Synch and 48% for Ov-Synch and Co-Synch. In beef animals progesterone based protocols gave weighted mean pregnancy rates of 60-63%. The technical merits of the various protocols are discussed and some general advice on synchronisation provided. The conclusion is that choice of protocol should be tailored to individual herd circumstances: for example progesterone-based protocols would be advisable in herds with weekly routines and cows not cycling fully. Source

Barjesteh N.,University of Guelph | Shojadoost B.,University of Guelph | Brisbin J.T.,Ceva Animal Health | Emam M.,University of Guelph | And 3 more authors.
Vaccine | Year: 2015

Avian influenza viruses (AIV) are of concern to the poultry industry. Outbreaks of AIV highlight the urgent need for effective control measures. Prophylactic strategies should be explored that rapidly elicit immunity against the virus. Toll-like receptors (TLRs) are innate immune molecules that can induce anti-viral responses, therefore the application of TLR ligands as prophylactic agents in chickens is gaining more attention. We hypothesized that treatment of chickens with TLR ligands reduces the shedding of AIV from infected birds. In addition, the effects of TLR ligand dose and route of administration on the efficiency of TLR ligands to reduce AIV shedding were examined. Chickens were treated with TLR2, 4, 7 and 21 ligands using different doses and routes of administration, 18. h before AIV infection. Moreover, the expression of several candidate genes, such as type I interferons, PKR, OAS, viperin and IFITM3 was quantified at 3, 8 and 18. h post-treatment with TLR ligands. The results revealed that route of administration and dosage affect the efficacy of TLR ligands to reduce virus shedding. Furthermore, varying effects were observed when different ligands were applied. Our results demonstrated that all TLR ligand treatments reduced AIV shedding, with the CpG-ODN 1826 being the most efficacious to reduce oral virus shedding, whereas LPS from Escherichia coli 026:B6 resulted in the largest reduction in cloacal virus shedding. Moreover, TLR ligands induced the expression of genes involved in antiviral responses such as type I interferons and interferon-stimulated genes in chicken trachea and cecal tonsils. These results raise the possibility of treatment of chickens with TLR ligands as anti-viral agents. © 2015 Elsevier Ltd. Source

Miller P.J.,U.S. Department of Agriculture | Afonso C.L.,U.S. Department of Agriculture | El Attrache J.,Ceva Animal Health | Dorsey K.M.,Ceva Animal Health | And 3 more authors.
Developmental and Comparative Immunology | Year: 2013

Different genotypes of avian paramyxovirus serotype-1 virus (APMV-1) circulate in many parts of the world. Traditionally, Newcastle disease virus (NDV) is recognized as having two major divisions represented by classes I and II, with class II being further divided into sixteen genotypes. Although all NDV are members of APMV-1 and are of one serotype, antigenic and genetic diversity is observed between the different genotypes. Reports of vaccine failure from many countries and reports by our lab on the reduced ability of classical vaccines to significantly decrease viral replication and shedding have created renewed interest in developing vaccines formulated with genotypes homologous to the virulent NDV (vNDV) circulating in the field. We assessed how the amount and specificity of humoral antibodies induced by inactivated vaccines affected viral replication, clinical protection and evaluated how non-homologous (heterologous) antibody levels induced by live NDV vaccines relate to transmission of vNDV. In an experimental setting, all inactivated NDV vaccines protected birds from morbidity and mortality, but higher and more specific levels of antibodies were required to significantly decrease viral replication. It was possible to significantly decrease viral replication and shedding with high levels of antibodies and those levels could be more easily reached with vaccines formulated with NDV of the same genotype as the challenge viruses. However, when the levels of heterologous antibodies were sufficiently high, it was possible to prevent transmission. As the level of humoral antibodies increase in vaccinated birds, the number of infected birds and the amount of vNDV shed decreased. Thus, in an experimental setting the effective levels of humoral antibodies could be increased by (1) increasing the homology of the vaccine to the challenge virus, or (2) allowing optimal time for the development of the immune response. © 2013. Source

Kapczynski D.R.,U.S. Department of Agriculture | Esaki M.,Ceva Animal Health | Dorsey K.M.,Ceva Animal Health | Jiang H.,U.S. Department of Agriculture | And 3 more authors.
Vaccine | Year: 2015

Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. © 2015 . Source

Discover hidden collaborations