Gosselies, Belgium
Gosselies, Belgium

Time filter

Source Type

Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: AAT.2013.1-3. | Award Amount: 45.04M | Year: 2013

The ENOVAL project will provide the next step of engine technologies to achieve and surpass the ACARE 2020 goals on the way towards Flightpath 2050. ENOVAL completes the European 7th Framework Programme (FP7) roadmap of Level 2 aero engine projects. ENOVAL will focus on the low pressure system of ultra-high by-pass ratio propulsion systems (12 < BPR < 20) in conjunction with ultra high overall pressure ratio (50 < OPR < 70) to provide significant reductions in CO2 emissions in terms of fuel burn (-3% to -5%) and engine noise (-1.3 ENPdB). ENOVAL will focus on ducted geared and non-geared turbofan engines, which are amongst the best candidates for the next generation of short/medium range and long range commercial aircraft applications with an entry into service date of 2025 onward. The expected fan diameter increase of 20 to 35% (vs. year 2000 reference engine) is significant and can be accommodated within the limits of a conventional aircraft configuration. It is in line with the roadmap of the Strategic Research and Innovation Agenda for 2020 to have the technologies ready for Optimised conventional aircraft and engines using best fuel efficiency and noise control technologies, where UHBR propulsion systems are expressively named as a key technology. ENOVAL will be established in a consistent series of Level 2 projects in conjunction with LEMCOTEC for core engine technologies, E-BREAK for system technologies for enabling ultra high OPR engines, and OPENAIR for noise reduction technologies. Finally, ENOVAL will prepare the way towards maturing the technology and preparing industrialisation in coordination with past and existing aero-engine initiatives in Europe at FP7 and national levels.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: AAT.2011.4.4-3. | Award Amount: 50.74M | Year: 2011

The project proposal concerns the challenges posed by the physical integration of smart intelligent structural concepts. It addresses aircraft weight and operational cost reductions as well as an improvement in the flight profile specific aerodynamic performance. This concerns material concepts enabling a conformal, controlled distortion of aerodynamically important surfaces, material concepts enabling an active or passive status assessment of specific airframe areas with respect to shape and potential damages and material concepts enabling further functionalities which to date have been unrealizable. Past research has shown the economic feasibility and system maturity of aerodynamic morphing. However, few projects concerned themselves with the challenges arising from the structural integration on commercial aircraft. In particular the skin material and its bonding to the substructure is challenging. It is the aim of this project proposal to demonstrate the structural realizability of individual morphing concepts concerning the leading edge, the trailing edge and the winglet on a full-size external wing by aerodynamic and structural testing. Operational requirements on morphing surfaces necessitate the implementation of an independent, integrated shape sensing system to ensure not only an optimal control of the aerodynamic surface but also failure tolerance and robustness. Developments made for structural health monitoring will be adapted to this task. Similar systems optimized for rapid in-service damage assessment have progressed to a maturity which allows their inclusion in the next generation of aircraft. However, the time consuming application of these sensor systems has to be further improved by integration at the component manufacturing level. The additional benefit of a utilization of these adapted systems for part manufacture process and quality control shall be assessed in SARISTU. Addressing the Nanotechnology aspect of the call, benefits regarding significant damage tolerance and electrical conductivity improvements shall be realized at sub-assembly level.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-11-2016 | Award Amount: 16.11M | Year: 2017

PRACE, the Partnership for Advanced Computing is the permanent pan-European High Performance Computing service providing world-class systems for world-class science. Systems at the highest performance level (Tier-0) are deployed by Germany, France, Italy and Spain providing researchers with over 11 billion core hours of compute time. HPC experts from 25 member states enabled users from academia and industry to ascertain leadership and remain competitive in the Global Race. Currently PRACE is in transition to PRACE 2, the successor of the initial five year period. The objectives of PRACE-5IP are to build on and seamlessly continue the successes of PRACE and start new innovative and collaborative activities proposed by the consortium. These include: assisting the transition to PRACE 2 including an analysis of Trans National Access; strengthening the internationally recognised PRACE brand; continuing and extend advanced training which so far provided more than 18 800 persontraining days; preparing strategies and best practices towards Exascale computing; coordinating and enhancing the operation of the multi-tier HPC systems and services; and supporting users to exploit massively parallel systems and novel architectures. A high level Service Catalogue is provided. The proven project structure will be used to achieve each of the objectives in 6 dedicated work packages. The activities are designed to increase Europes research and innovation potential especially through: seamless and efficient Tier-0 services and a pan-European HPC ecosystem including national capabilities; promoting take-up by industry and new communities and special offers to SMEs; implementing a new flexible business model for PRACE 2; proposing strategies for deployment of leadership systems; collaborating with the ETP4HPC, CoEs and other European and international organisations on future architectures, training, application support and policies. This will be monitored through a set of KPIs.


Hybrid-EVs and Full-EVs on the market are products where the Internal-Combustion-Engine (ICE) is supplemented by an electric-motor (HEV) or replaced by an all-electric power-train (FEV). Both approaches do not address lightweight or modularity inheriting the same disadvantages as conventional ICEV - Electrification of mobility must face a conceptual rEVOLUTION! This project breaks the paradigm of current Body-in-White (BiW) by delegating the whole structural function to a novel BiW archetype made up of a Multifunctional-Rolling-Chassis (MRC) enabled by a new generation of highly-hybridized structural components and complemented by a non-structural upper-body. This MRC will be the common basis for a family of user friendly vehicles differing by changing only the upper-body according to the customer demand. Advanced materials will enable the development of novel super-lightweight hybrid components complying with safety standards and recycling constraints, and enable the design of the innovative MRC for FEV leading to a further weight reduction of 40% over that achieved using the current state of the art in the SuperLIGHT-CAR project. The EVolution goal is to demonstrate the sustainable production of a 600 kg weight FEV by the end of 2015. To this end EVolution addresses the whole vehicle by prototyping, assembling, and disassembling, the most representative components (MRC, crash cross-beam, crash box, suspension sub-frame, side-door, A-pillar, and a multifunctional-hard-top) made from raw polymers and aluminum alloys commonly used in the automotive industry, to ensure compliance with EC Directive 2000/53/EC End-of life vehicle which imposes stringent requirements on the disposal and recycling of motor vehicles. Guaranteeing the safety and regulatory compliance, with a weight saving of 50%, each component chosen will prove, mutatis mutandis, the revolutionary potential of the EV solution in all components employed today in current high volume production.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: AAT.2012.1.4-2. | Award Amount: 30.14M | Year: 2012

Future aero engines will need to be more efficient and contribute to the reduction on environmental impact of air transportation. They must reach some standards of performance by reducing emissions and creating some savings on operation costs. EIMG consortium has launched since several years some initiatives to develop future engines in the frame of the European Committee research programmes. Within different project such as DREAM, VITAL, NEWAC or LEMCOTEC, EIMG is ensuring the development of innovative technologies in order to further reduce the fuel burn, emissions and noise. In order to ensure the technological breakthrough, future aero-engines will have higher overall pressure ratios (OPR) to increase thermal efficiency and will have higher bypass ratios (BPR) to increase propulsive efficiency. These lead to smaller and hotter high pressure cores. As core engine technologies have been addressed in the previous project, E-BREAK project will ensure the mandatory evolution of sub-systems. It is indeed required for enabling integration of engine with new core technologies to develop adequate technologies for sub-systems. E-BREAK will aim to adapt sub-systems to new constraints of temperature and pressure. The overall picture of these initiatives bring all technology bricks to a TRL level ensuring the possibility to integrate them in a new aero engines generation before 2020. In its 2020 vision, ACARE aims to reduce by 50% per passenger kilometer CO2 emissions with an engine contribution targeting a decrease by 15 to 20% of the SFC. NOX emissions would have to be reduced by 80 % and efforts need to be made on other emissions. E-BREAK will be an enabler of the future UHOPR integrated engine development, completing efforts done in previous or in on-going Level 2 programs.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: AAT.2013.4-6. | Award Amount: 26.47M | Year: 2013

Thermal behaviour of aircraft has recently become a crucial subject due to many factors: increasing number of complex systems required by modern, more electric, commercial aircraft, the introduction of hotter engines with higher by-pass ratios, the increased use of composite material in aircraft structures, or the confinement of highly dissipative equipment and systems in smaller areas to earn space for passengers and cargo. New advanced techniques to manage the aircraft thermal behaviour at the very early stages of development are essential to take the right configuration decisions while meeting market demands. To work efficiently and on emerging innovative solutions, it is essential to perform thermal management at the global aircraft level. Today, thermal studies are performed for sizing and risk analyses. The TOICA project intends to radically change the way thermal studies are performed within aircraft design processes. It will create and manage a thermal aircraft architecture which today does not exist. This will be shared in the extended enterprise with design partners through a collaborative environment supporting new advanced capabilities developed by the project, namely the architect cockpit, which will allow the architects and experts to monitor the thermal assessment of an aircraft and to perform trade-off studies. Super integration will support a holistic view of the aircraft and allow traditional design views and the related simulation cascade to be challenged. Six use cases illustrating new thermal strategies will demonstrate the benefits of the TOICA approach on realistic aircraft configurations. Plateaus will be organised with architects for the definition, selection and evaluation of thermally optimised aircraft configurations. These plateaus will drumbeat the project. In parallel, technology readiness evaluations will assess the maturity of the developed technologies and support the deployment and exploitation of the TOICA results.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: AAT.2012.4.1-2.;AAT.2012.4.1-5. | Award Amount: 6.62M | Year: 2012

The main challenge of the BOPACS project is to reduce the weight and costs of primary aerospace structures by developing bolt free adhesive bonded joints that comply with the airworthiness requirements. Until today thin walled composite primary aerospace structures are joined by using a large number of fasteners. Bolt free joining would considerably contribute to the weight and cost reduction of aerospace structures. Within BOPACS target applications will be selected that are commonly used in todays aerospace primary structures and where adhesive bonding might advantageously replace conventional riveting / fastening. Based on these target application bolt free adhesive bonded joining methods will be developed that comply with the EASA airworthiness requirements. Contrary to projects focusing on the development of non destructive techniques for the inspection of weak bonds, BOPACS proposes arigorous road map to certification by developing Means of Comply based on: Thorough research, beyond the state of the art, into the crack growth / disbond extension mechanisms in adhesively bonded joints. Design, analysis, testing and assessment of different categories of crack stopping design features, i.e. features that are capable of preventingcracks or disbonds from growing above a predefined acceptable size, with a joint still capable of carrying the limit load. The project results and certification issues will be reviewed on a regular base by EASA representatives through the Airbus certification department.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-1.1-2014 | Award Amount: 3.05M | Year: 2015

The ability to simulate aerodynamic flows using CFD methods has progressed rapidly over the last decades and has given rise to a change in design processes in aeronautics already. But more improvement is necessary to overcome the (still) existing lack in confidence in CFD usage, based on turbulence modelling. The TILDA project will offer methods and approaches combining advanced and efficient high-order numerical schemes (HOMs) with innovative approaches for LES and DNS in order to resolve all relevant flow features on tens of thousands of processors in order to get close to a full LES/DNS solution for 1billion degrees-of-freedom (DOF) not exceeding turn-around times of a few days. The TILDA project will provide both an improved physical knowledge and more accurate predictions of non-linear, unsteady flows near borders of the flight envelope - which will directly contribute to an enhanced reliability. The main highly innovative objectives, targeting at industrial needs read: Advance methods to accelerate HOM for unsteady turbulence simulations on unstructured grids. Advance methods to accelerate LES and future DNS methodology by multilevel, adaptive, fractal and similar approaches on unstructured grids. Use existent large scale HPC networks to enable industrial applications of LES/DNS close(r) to daily practice. Compact high-order methods offer a very high ratio between computational work per DOF combined to a low data dependency stencil, making these methods extremely well adapted for shared-memory parallel processors, and allow for efficient redistribution over an increased number of processors. Provide grid generation methods for HOM on unstructured grids with emphasis on valid curvilinear meshes for complex geometries, and accounting for mesh and solution quality. Provide suitable I/O and interactive co- and post-processing tools for large datasets. Demonstration of multi-disciplinary capabilities of HOM for LES in the area of aero-acoustics.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2013.3.4 | Award Amount: 3.92M | Year: 2013

The goal of this project is to reduce the power performance ratio within data-centres by improving the usability and usefulness of FPGAs, embedded CPU (eCPU), GPUs and multi/manycore accelerators in high-performance and low-power heterogeneous computing servers. We target applications between traditional super computing tasks (where huge amount of man-power can be spent for manual algorithm optimization) and general purpose data-centre applications (which have to run as they are w/o any optimization for hardware acceleration).\nThe consortium consists of partners from embedded systems and high-performance computing domains. We will combine our experiences in automatic software-to-hardware synthesis and hardware-software co-design from the embedded systems world with the hardware and application experience from the high-performance computing world.\nThe project focus will be on a) setting up a flexible server hardware system, offering a user-constrainted amount of CPUs, eCPUs, FPGAs, GPUs and multi/manycore processors; b) setting up a software development environment, easing up computing resources co-programming adapted fromexisting tools and runtime management techniques from the embedded system domain and leveraging state-of-the-art middle-ware communication and execution frameworks from the HPC domain; and c) demonstrate the effectiveness of both hardware and software environments from FiPS outputs with real world applications at four HPC application partners.


Grant
Agency: Cordis | Branch: FP7 | Program: BSG-SME | Phase: SME-2013-1 | Award Amount: 1.34M | Year: 2013

By combining a new surface engineering process with state-of-the-art thermal modelling, significant design and performance improvements to heat exchangers for electronic and electrical systems can be made. The surface designs created will not only provide an increase in surface area (allowing for smaller size heat exchanger packaging), but also enable designed flow over a surface (which will enhance its heat transfer potential). These benefits will place a consortium of SMEs in a position to compete against competition from countries with cheaper labour overheads and the potential for charging a price premium for specialised systems, increasing their profitability and generating value in the EU economy. There is a drive towards miniaturisation of electronic devices as well as requirements for higher power applications. The size of the heat exchangers necessary is the limiting factor for package size. By combining a European surface processing technology with complex computational fluid dynamics (CFD) modelling, heat exchange surfaces will be customised and optimised. The result will be optimised, efficient heat exchangers for the next generation of electronic devices. Conventional heat exchanger manufacturing processes are extensively developed and only small future efficiency improvements are likely to arise. The Heat-Sculptor project will generate an enabling technology that will increase the performance of heat exchangers by >23%. Until now, designs have been constrained by production technologies e.g. machining or chemical etching. The new electron beam surface engineering process, Surfi-Sculpt, has the capability to rapidly create complex Heat-Sculptor surface geometries that are not possible with existing techniques.

Loading Cernium collaborators
Loading Cernium collaborators