Ceramatec Inc

Salt Lake City, UT, United States

Ceramatec Inc

Salt Lake City, UT, United States

Time filter

Source Type

A multi-stage sodium heat engine is provided to convert thermal energy to electrical energy, the multi-stage sodium heat engine including at least a first stage, a second stage, and an electrical circuit operatively connecting the first stage and the second stage with an electrical load. One or more methods of powering an electrical load using a multi-stage sodium heat engine are also described.


Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.


Electrochemical systems and methods for producing hydrogen. Generally, the systems and methods involve providing an electrochemical cell that includes an anolyte compartment holding a photo anode in contact with an anolyte, wherein the anolyte includes an alkali metal iodide. The photo anode includes anode components of a dye-sensitized solar cell. The cell further includes a catholyte compartment holding a cathode in contact with a catholyte that includes a substance that reduces to form hydrogen. Additionally, the cell includes an alkali cation conductive membrane that separates the anolyte compartment from the catholyte compartment. As the photo anode is irradiated, iodide ions are oxidized to form molecular iodine or triiodide ions and electrons pass to the cathode form hydrogen. Apparatus and methods to regenerate the alkali metal iodide are disclosed.


Patent
Ceramatec Inc | Date: 2017-04-19

An electrolytic method of producing olefins from alkali metal salts of carboxylic acids is disclosed. The carboxylic acid may be from a variety of sources including fermented biomass that is subsequently neutralized using an alkali metal base. The method enables the efficient production of olefins including alpha-olefins as well as useful olefin products such as synthetic oils.


Patent
Ceramatec Inc | Date: 2017-01-13

Embodiments of the present disclosure generally relate to devices and methods for sterilizing equipment. More particularly, one or more embodiments described in the present disclosure are directed to portable devices for sterilizing medical equipment in emergency situations. The sterilization devices and method of the present disclosure address an unmet need for sterilizing surgical equipment in a manner that is not only effective and time-efficient, but is also portable and reliable enough to use in emergency medical situations in remote locations where modern sterilization equipment is not available.


Patent
Ceramatec Inc | Date: 2017-04-21

A solid oxide fuel cell (SOFC) (100) for use in generating electricity while tolerating sulfur content in a fuel input stream. The solid oxide fuel cell (100) includes an electrolyte (106), a cathode (102), and a sulfur tolerant anode (104). The cathode (102) is disposed on a first side of the electrolyte (106). The sulfur tolerant anode (104) is disposed on a second side of the electrolyte (106) opposite the cathode (102). The sulfur tolerant anode (104) includes a composition of nickel, copper, and ceria to exhibit a substantially stable operating voltage at a constant current density in the presence of the sulfur content within the fuel input stream. The solid oxide fuel cell (100) is useful within a SOFC stack to generate electricity from reformate which includes synthesis gas (syngas) and sulfur content. The solid oxide fuel cell (100) is also useful within a SOFC stack to generate electricity from unreformed hydrocarbon fuel.


Patent
SK Innovation Co. and Ceramatec Inc | Date: 2015-08-12

Provided is a sodium secondary battery including: an anode containing sodium; a cathode containing sulfur; a cathode electrolyte solution being in contact with the cathode and capable of conducting sodium ions into and from a solid electrolyte membrane; and a solid electrolyte separating the anode and the cathode electrolyte solution and having sodium ion conductivity. The sodium secondary battery of the present invention overcomes the problems of thermal management and heat sealing due to a high operating temperature, possessed by the existing sodium-sulfur battery or sodium-nickel chloride battery (so called, a ZEBRA battery), and may achieve high a charge and discharge mechanism characteristic.


Patent
Ceramatec Inc | Date: 2016-03-04

Electrochemical systems and methods for producing hydrogen. Generally, the systems and methods involve providing an electrochemical cell that includes an anolyte compartment holding an anode in contact with an anolyte, wherein the anolyte includes an oxidizable substance having a higher standard oxidation potential than water. The cell further comprises a catholyte compartment holding a cathode in contact with a catholyte that includes a substance that reduces to form hydrogen. Additionally, the cell includes an alkali cation conductive membrane that separates the anolyte compartment from the catholyte compartment. As an electrical potential passes between the anode and cathode, the reducible substance reduces to form hydrogen and the oxidizable substance oxidizes to form an oxidized product. The pH within the catholyte compartment may be controlled and maintained to a value in the range of 6 to 8. Apparatus and methods to regenerate the oxidizable substance are disclosed.


The present invention provides a sodium-aluminum secondary cell. The cell includes a sodium metal negative electrode, a positive electrode compartment that includes an aluminum positive electrode disposed in a positive electrolyte mixture of NaAl_(2)X_(7 )and NaAlX_(4), where X is a halogen atom or mixture of different halogen atoms selected from chlorine, bromine, and iodine, and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrolyte. In such cases, the electrolyte membrane can include any suitable material, including, without limitation, a NaSICON-type membrane. Generally, when the cell functions, both the sodium negative electrode and the positive electrolyte are molten and in contact with the electrolyte membrane. Additionally, the cell is functional at an operating temperature between about 100 C. and about 200 C.


Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

Loading Ceramatec Inc collaborators
Loading Ceramatec Inc collaborators