Entity

Time filter

Source Type


Escudero M.,Centro Universitario Of La Defensa Cud Of Zaragoza | Viana M.,CSIC - Institute of Environmental Assessment And Water Research | Querol X.,CSIC - Institute of Environmental Assessment And Water Research | Alastuey A.,CSIC - Institute of Environmental Assessment And Water Research | And 3 more authors.
Environmental Science and Pollution Research | Year: 2015

In urban areas, primary and secondary organic aerosols are typically considered to originate from vehicular traffic emissions. However, industrial emissions within or in the vicinity of urban areas may also be significant contributors to carbonaceous aerosol concentrations. This hypothesis was tested and validated in two urban areas in Spain. The observed unusual dominance of organic carbon (OC) over elemental carbon (EC), the analysis of the variability of OC, EC and OC/EC and their correlation with transport patterns suggested the presence of OC sources associated with industrial activities. A methodology based on chemical speciation of particulate matter (PM) followed by the application of receptor modelling techniques allowed for the identification of the specific industrial sources of OC, which were linked to primary OC emissions from a grain drying plant (cereal) and to secondary OC formation from paper production activities (paper mills), as well as from urban sources and biogenic emissions. This work presents an integrated approach to identifying and characterizing of industrial sources of carbonaceous aerosols in urban areas, aiming to improve the scarce body of literature currently available on this topic. © 2015 Springer-Verlag Berlin Heidelberg Source


Escudero M.,Centro Universitario Of La Defensa Cud Of Zaragoza | Lozano A.,Centro Universitario Of La Defensa Cud Of Zaragoza | Hierro J.,Centro Universitario Of La Defensa Cud Of Zaragoza | Tapia O.,Centro Universitario Of La Defensa Cud Of Zaragoza | And 5 more authors.
Atmospheric Environment | Year: 2016

Air quality in nine National Parks in mainland Spain was assessed analysing SO2, NOx, O3, PM10 and PM2.5 data from background stations. As emissions in and around parks are limited, the levels of primary pollutants are low. Concentrations of secondary pollutants are high especially in summer due to photochemical production. The geographical variability of pollutants responds to regional emission patterns and the dominant circulation regimes in different regions resulting in west-east gradients for O3 and PM. Seasonal variability of pollutants was also interpreted in virtue of transport scenarios, changes in photochemical activity and emissions variability. NOx and SO2, maximize in winter due to higher emissions while O3 and PM do it in summer due to photochemical production, lower precipitation and, in the case of PM, the occurrence of African dust outbreaks. The diurnal evolution was interpreted in virtue of variability in emissions and changes in the Planetary Boundar Layer height. © 2016 Elsevier Ltd. Source


Tapia O.,Centro Universitario Of La Defensa Cud Of Zaragoza | Escudero M.,Centro Universitario Of La Defensa Cud Of Zaragoza | Lozano A.,Centro Universitario Of La Defensa Cud Of Zaragoza | Anzano J.,University of Zaragoza
Science of the Total Environment | Year: 2016

According to European Union (EU) legislation, ozone (O3) monitoring sites can be classified regarding their location (rural background, rural, suburban, urban) or based on the presence of emission sources (background, traffic, industrial). There have been attempts to improve these classifications aiming to reduce their ambiguity and subjectivity, but although scientifically sound, they lack the simplicity needed for operational purposes. We present a simple methodology for classifying O3 stations based on the characteristics of frequency distribution curves which are indicative of the actual impact of combustion sources emitting NO that consumes O3 via titration. Four classes are identified using 1998-2012 hourly data from 72 stations widely distributed in mainland Spain and the Balearic Islands. Types 1 and 2 present unimodal bell-shaped distribution with very low amount of data near zero reflecting a limited influence of combustion sources while Type 4 has a primary mode close to zero, showing the impact of combustion sources, and a minor mode for higher concentrations. Type 3 stations present bimodal distributions with the main mode in the higher levels. We propose a quantitative metric based on the Gini index with the objective of reproducing this classification and finding empirical ranges potentially useful for future classifications. The analysis of the correspondence with the EUROAIRNET classes for the 72 stations reveals that the proposed scheme is only dependent on the impact of combustion sources and not on climatic or orographic aspects. It is demonstrated that this classification is robust since in 87% of the occasions the classification obtained for individual years coincide with the global classification obtained for the 1998-2012 period. Finally, case studies showing the applicability of the new classification scheme for assessing the impact on O3 of a station relocation and performing a critical evaluation of an air quality monitoring network are also presented. © 2015 Elsevier B.V. Source


Escudero M.,Centro Universitario Of La Defensa Cud Of Zaragoza | Lozano A.,Centro Universitario Of La Defensa Cud Of Zaragoza | Hierro J.,Centro Universitario Of La Defensa Cud Of Zaragoza | Valle J.D.,Centro Universitario Of La Defensa Cud Of Zaragoza
Atmospheric Environment | Year: 2014

Air quality in cities has been extensively studied due to the high population density potentially exposed to high levels of pollutants. The main problems in urban areas have been related to particulate matter (PM) and NO2. Less attention has been directed towards O3 because urban levels are generally lower than those recorded in rural areas. The implementation of air quality plans, together with technological improvements, have resulted in reductions of PM and NO2 levels in many European cities. In contrast, urban O3 levels have experimented increases which may respond to declining NOx emission trends. It is therefore necessary to intensify the study of urban O3 and its potential relation with NOx variations. In the agglomeration of Zaragoza (NE Spain), traffic circulation through the centre has dropped by 28.3% since 2008 due to several factors such as the implementation of a mobility plan, the completion of major construction projects and the economic crisis in Spain. The study of this case offers a unique opportunity to evaluate the impact of reductions in NOx emissions on the levels of O3 in a characteristic Mediterranean city. This work analyses the variability and trends of ambient air levels of O3 and NOx in Zaragoza and the Ebro valley from 2007 to 2012. Results demonstrate that, although the main factor explaining O3 variability is still linked to meteorology, changes in NOx emissions strongly influence O3 variability and trends, mainly due to interaction with fresh NO. Specific analysis of the O3 "weekend effect" show a significant correlation (r2=0.81) between the drop of NO concentrations (associated to emissions) and the increment of O3 levels during weekends. Moreover, trend analyses reveal that the decline in NOx emissions in Zaragoza from 2007 to 2012 can be associated with significant increments in O3 levels. © 2014 Elsevier Ltd. Source


Escudero M.,Centro Universitario Of La Defensa Cud Of Zaragoza | Viana M.,Centro Universitario Of La Defensa Cud Of Zaragoza | Querol X.,Centro Universitario Of La Defensa Cud Of Zaragoza | Alastuey A.,Centro Universitario Of La Defensa Cud Of Zaragoza | And 3 more authors.
Environmental science and pollution research international | Year: 2015

In urban areas, primary and secondary organic aerosols are typically considered to originate from vehicular traffic emissions. However, industrial emissions within or in the vicinity of urban areas may also be significant contributors to carbonaceous aerosol concentrations. This hypothesis was tested and validated in two urban areas in Spain. The observed unusual dominance of organic carbon (OC) over elemental carbon (EC), the analysis of the variability of OC, EC and OC/EC and their correlation with transport patterns suggested the presence of OC sources associated with industrial activities. A methodology based on chemical speciation of particulate matter (PM) followed by the application of receptor modelling techniques allowed for the identification of the specific industrial sources of OC, which were linked to primary OC emissions from a grain drying plant (cereal) and to secondary OC formation from paper production activities (paper mills), as well as from urban sources and biogenic emissions. This work presents an integrated approach to identifying and characterizing of industrial sources of carbonaceous aerosols in urban areas, aiming to improve the scarce body of literature currently available on this topic. Source

Discover hidden collaborations