Time filter

Source Type

Machain-Williams C.,Autonomous University of Yucatan | Lopez-Uribe M.,Autonomous University of Yucatan | Talavera-Aguilar L.,Autonomous University of Yucatan | Carrillo-Navarrete J.,Laboratorio Of Enfermedades Emergentes Y Re Emergentes | And 7 more authors.
Journal of Wildlife Diseases | Year: 2013

We captured 140 bats of seven species in Merida City in the Yucatan Peninsula of Mexico in 2010. Serum was collected from each bat and assayed by plaque reduction neutralization test (PRNT) using six flaviviruses: West Nile virus, St. Louis encephalitis virus, and dengue viruses 1-4. Flavivirus-specific antibodies were detected in 26 bats (19%). The antibody-positive bats belonged to three species: the Pallas's long-tongued bat (Glossophaga soricina), Jamaican fruit bat (Artibeus jamaicensis), and great fruit-eating bat (Artibeus lituratus), and their flavivirus antibody prevalences were 33%, 24%, and 9%, respectively. The PRNT titers were usually highest for dengue virus 2 or dengue virus 4, but none of the titers exceeded 80. These data could indicate that most of the antibody-positive bats had been infected with dengue virus. However, because all titers were low, it is possible that the bats had been infected with another (perhaps unrecognized) flavivirus not included in the PRNT analysis, possibly a virus more closely related to dengue virus than to other flaviviruses. Each serum sample was assayed for flavivirus RNA by reverse transcription PCR, but all were negative. © Wildlife Disease Association 2013. Source

Pech-May A.,CONICET | Peraza-Herrera G.,Autonomous University of Yucatan | Moo-Llanes D.A.,Centro Regional Of Investigacion En Salud Publica | Escobedo-Ortegon J.,Autonomous University of Yucatan | And 4 more authors.
Medical and Veterinary Entomology | Year: 2016

Localized cutaneous leishmaniasis represents a public health problem in many areas of Mexico, especially in the Yucatan Peninsula. An understanding of vector ecology and bionomics is of great importance in evaluations of the transmission dynamics of Leishmania parasites. A field study was conducted in the county of Calakmul, state of Campeche, during the period from November 2006 to March 2007. Phlebotomine sandfly vectors were sampled using Centers for Disease Control light traps, baited Disney traps and Shannon traps. A total of 3374 specimens were captured in the two villages of Once de Mayo (93.8%) and Arroyo Negro (6.1%). In Once de Mayo, the most abundant species were Psathyromyia shannoni, Lutzomyia cruciata, Bichromomyia olmeca olmeca and Psychodopygus panamensis (all: Diptera: Psychodidae). The Shannon trap was by far the most efficient method of collection. The infection rate, as determined by Leishmania mexicana-specific polymerase chain reaction, was 0.3% in Once de Mayo and infected sandflies included Psy.panamensis, B.o.olmeca and Psa.shannoni. There were significant differences in human biting rates across sandfly species and month of sampling. Ecological niche modelling analyses showed an overall overlap of 39.1% for the four species in the whole state of Campeche. In addition, the finding of nine vector-reservoir pairs indicates a potential interaction. The roles of the various sandfly vectors in Calakmul are discussed. © 2016 The Royal Entomological Society. Source

Valerio L.,University of Rome La Sapienza | Valerio L.,University of California at Davis | Facchinelli L.,University of California at Davis | Ramsey J.M.,Centro Regional Of Investigacion En Salud Publica | And 2 more authors.
American Journal of Tropical Medicine and Hygiene | Year: 2012

Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release- recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12-166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. Copyright © 2012 by The American Society of Tropical Medicine and Hygiene. Source

Pozo-Aguilar J.O.,National Autonomous University of Mexico | Monroy-Martinez V.,National Autonomous University of Mexico | Diaz D.,National Autonomous University of Mexico | Barrios-Palacios J.,National Autonomous University of Mexico | And 4 more authors.
Parasites and Vectors | Year: 2014

Background: Dengue fever (DF) is the most prevalent arthropod-borne viral disease affecting humans. The World Health Organization (WHO) proposed a revised classification in 2009 to enable the more effective identification of cases of severe dengue (SD). This was designed primarily as a clinical tool, but it also enables cases of SD to be differentiated into three specific subcategories (severe vascular leakage, severe bleeding, and severe organ dysfunction). However, no study has addressed whether this classification has advantage in estimating factors associated with the progression of disease severity or dengue pathogenesis. We evaluate in a dengue outbreak associated risk factors that could contribute to the development of SD according to the 2009 WHO classification. Methods: A prospective cross-sectional study was performed during an epidemic of dengue in 2009 in Chiapas, Mexico. Data were analyzed for host and viral factors associated with dengue cases, using the 1997 and 2009 WHO classifications. The cost-benefit ratio (CBR) was also estimated. Results: The sensitivity in the 1997 WHO classification for determining SD was 75%, and the specificity was 97.7%. For the 2009 scheme, these were 100% and 81.1%, respectively. The 2009 classification showed a higher benefit (537%) with a lower cost (10.2%) than the 1997 WHO scheme. A secondary antibody response was strongly associated with SD. Early viral load was higher in cases of SD than in those with DF. Logistic regression analysis identified predictive SD factors (secondary infection, disease phase, viral load) within the 2009 classification. However, within the 1997 scheme it was not possible to differentiate risk factors between DF and dengue hemorrhagic fever or dengue shock syndrome. The critical clinical stage for determining SD progression was the transition from fever to defervescence in which plasma leakage can occur. Conclusions: The clinical phenotype of SD is influenced by the host (secondary response) and viral factors (viral load). The 2009 WHO classification showed greater sensitivity to identify SD in real time. Timely identification of SD enables accurate early decisions, allowing proper management of health resources for the benefit of patients at risk for SD. This is possible based on the 2009 WHO classification. © 2014 Pozo-Aguilar et al.; licensee BioMed Central. Source

Marina C.F.,Centro Regional Of Investigacion En Salud Publica | Bond J.G.,Centro Regional Of Investigacion En Salud Publica | Casas M.,Centro Regional Of Investigacion En Salud Publica | Munoz J.,Centro Regional Of Investigacion En Salud Publica | And 3 more authors.
Pest Management Science | Year: 2011

Background: Field trials were conducted during the wet and dry seasons in periurban and semi-rural cemeteries in southern Mexico to determine the efficacy of a suspension concentrate formulation of spinosad (Tracer 480SC) on the inhibition of development of Aedes albopictus L. and Ae. aegypti Skuse. For this, oviposition traps were treated with spinosad (1 or 5 mg L-1), Bacillus thuringiensis israelensis (Bti, VectoBac 12AS), a sustained release formulation of temephos and a water control. Results: Ae. albopictus was subordinate to Ae. aegypti during the dry season, but became dominant or codominant during the wet season at both sites. The two species could not be differentiated in field counts on oviposition traps. Mean numbers of larvae + pupae of Aedes spp. in Bti-treated containers were similar to the control at both sites during both seasons. The duration of complete absence of aquatic stages varied from 5 to 13 weeks for the spinosad treatments and from 6 to 9 weeks for the temephos treatment, depending on site, season and product concentration. Predatory Toxorhynchites theobaldi Dyar and Knab suffered low mortality in control and Bti treatments, but high mortality in spinosad and temephos treatments. Egg counts and percentage of egg hatch of Aedes spp. increased significantly between the dry and wet seasons, but significant treatment differences were not detected. Conclusion: Temephos granules and a suspension concentrate formulation of spinosad were both highly effective larvicides against Ae. aegypti and Ae. albopictus. These compounds merit detailed evaluation for inclusion in integrated control programs targeted at Ae. aegypti and Ae. albopictus in regions where they represent important vectors of human diseases. © 2010 Society of Chemical Industry. Source

Discover hidden collaborations