Centro Para La Biodiversidad Marina Y La Conservacion Ac

Santa María de la Paz, Mexico

Centro Para La Biodiversidad Marina Y La Conservacion Ac

Santa María de la Paz, Mexico

Time filter

Source Type

Leslie H.M.,Brown University | Basurto X.,Duke University | Nenadovic M.,Duke University | Sievanen L.,Brown University | And 20 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.


PubMed | Brown University, Stanford University, Smithsonian Environmental Research Center, Sociedad de Historia Natural Niparaja A.C. and 5 more.
Type: Journal Article | Journal: Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.


Erisman B.,University of Texas at Austin | Mascarenas-Osorio I.,Centro Para La Biodiversidad Marina Y La Conservacion Ac | Lopez-Sagastegui C.,Mexus | Moreno-Baez M.,University of California at San Diego | And 2 more authors.
Fisheries Research | Year: 2015

We engaged in collaborative research with two small-scale fishing communities inside the Upper Gulf of California Biosphere Reserve in Mexico, San Felipe (SF) and El Golfo de Santa Clara (GSC), to test how well the geographic heterogeneity of fishing activities within the reserve coincided with current regulations. We compared the two communities in terms of catch composition, fishing effort, ex-vessel prices and revenues, seasonal patterns in fishing activities in relation to the reproductive seasons of target species, and spatial patterns of fishing in relation to managed zones within the reserve. The top four species (Cynoscion othonopterus, Micropogonias megalops, Scomberomorus concolor, Litopenaeus stylirostris) in terms of relative effort, catch, and revenues were the same for both communities but overall fisheries production, effort, and revenues were higher in GSC than SF for these species. Fishing activities in GSC followed a predictable annual cycle that began with L. stylirostris and were followed sequentially by the harvesting of C. othonopterus, M. megalops, and S. concolor during their respective spawning seasons, which were associated with seasonal variations in ex-vessel prices. Conversely, catch and revenues in SF were more diversified, less dependent on those four species, less seasonal, and did not show seasonal variations in prices. Interactions between fisheries and managed zones also differed such that SF interacted mainly with the southwest portion of the vaquita (Phocoena sinus) refuge, whereas GSC fished over a larger area and interacted mainly with the northeast portion of the vaquita refuge and the no-take zone. Our results indicate the two communities differ markedly in their socio-economic dependence on fisheries, their spatio-temporal patterns of fishing, their use of and impacts on species, coastal ecosystems and managed areas, and how different regulations may affect livelihoods. Regional management and conservation efforts should account for these differences to ensure the protection of endangered species and to sustain ecosystem services that maintain livelihoods and healthy coastal ecosystems. This study provides further evidence of the ability of collaborative research between scientists and fishers to produce robust and fine-scale fisheries and biological information that improves the collective knowledge and management of small-scale fisheries within marine protected areas. © 2014 Elsevier B.V.


Chabot C.L.,California State University, Northridge | Espinoza M.,University of Costa Rica | Mascarenas-Osorio I.,Centro Para La Biodiversidad Marina Y La Conservacion Ac | Rocha-Olivares A.,CICESE
Ecology and Evolution | Year: 2015

We assessed the effects of the prominent biogeographic (Point Conception and the Peninsula of Baja California) and phylogeographic barriers (Los Angeles Region) of the northeastern Pacific on the population connectivity of the brown smoothhound shark, Mustelus henlei (Triakidae). Data from the mitochondrial control region and six nuclear microsatellite loci revealed significant population structure among three populations: northern (San Francisco), central (Santa Barbara, Santa Catalina, Punta Lobos, and San Felipe), and southern (Costa Rica). Patterns of long-term and contemporary migration were incongruent, with long-term migration being asymmetric and occurring in a north to south direction and a lack of significant contemporary migration observed between localities with the exception of Punta Lobos that contributed migrants to all localities within the central population. Our findings indicate that Point Conception may be restricting gene flow between the northern and central populations whereas barriers to gene flow within the central population would seem to be ineffective; additionally, a contemporary expansion of tropical M. henlei into subtropical and temperate waters may have been observed. We assessed the effects of the prominent biogeographic (Point Conception and the Peninsula of Baja California) and phylogeographic barriers (Los Angeles Region) of the northeastern Pacific on the population connectivity of the brown smoothhound shark, Mustelus henlei (Triakidae). Data from the mitochondrial control region and six nuclear microsatellite loci revealed significant population structure among three populations: northern (San Francisco), central (Santa Barbara, Santa Catalina, Punta Lobos, and San Felipe), and southern (Costa Rica). Our findings indicate that Point Conception may be restricting gene flow between the northern and central populations whereas barriers to gene flow within the central population would seem to be ineffective. © 2015 The Authors.

Loading Centro Para La Biodiversidad Marina Y La Conservacion Ac collaborators
Loading Centro Para La Biodiversidad Marina Y La Conservacion Ac collaborators