Time filter

Source Type

Porto Alegre, Brazil

Artigalas O.,Federal University of Rio Grande do Sul | Paskulin G.,Federal University of Health Sciences, Porto Alegre | Riegel M.,Centro Of Terapia Genica | Burin M.,Servico de Genetica Medica | And 4 more authors.
Genetics and Molecular Biology | Year: 2012

A 10-year-old speechless, mentally deficient male, with low arylsulfatase A (ARSA) activity, and presumably, methachromatic leukodystrophy, underwent genetic evaluation. As the clinical picture was not compatible with this diagnosisan ARSA gene and chromosome analysis were performed, showing the presence of a pseudodeficiency ARSA allele and a de novo apparently balanced t(16;22)(p11.2;q13) translocation. A deletion on the long arm of chromosome 22 encompassing the ARSA gene, as shown by FISH and array-CGH, indicated a 22q13 deletion syndrome. This case illustrates the importance of detailed cytogenetic investigation in patients presenting low arylsulfatase A activity and atypical/unspecific clinical features. © 2012, Sociedade Brasileira de Genética. Source

Charao M.F.,Federal University of Rio Grande do Sul | Charao M.F.,University of Porto | Baierle M.,Federal University of Rio Grande do Sul | Baierle M.,University of Porto | And 18 more authors.
Mutation Research - Genetic Toxicology and Environmental Mutagenesis | Year: 2015

Many acute poisonings lack effective and specific antidotes. Due to both intentional and accidental exposures, paraquat (PQ) causes thousands of deaths annually, especially by pulmonary fibrosis. Melatonin (Mel), when incorporated into lipid-core nanocapsules (Mel-LNC), has enhanced antioxidant properties. The effects of such a formulation have not yet been studied with respect to mitigation of PQ- induced cytotoxicity and DNA damage. Here, we have tested whether Mel-LNC can ameliorate PQ-induced toxicity in the A549 alveolar epithelial cell line. Physicochemical characterization of the formulations was performed. Cellular uptake was measured using nanocapsules marked with rhodamine B. Cell viability was determined by the MTT assay and DNA damage was assessed by the comet assay. The enzyme-modified comet assay with endonuclease III (Endo III) and formamidopyrimidine glycosylase (FPG) were used to investigate oxidative DNA damage. Incubation with culture medium for 24. h did not alter the granulometric profile of Mel-LNC formulations. Following treatment (3 and 24. h), red fluorescence was detected around the cell nucleus, indicating internalization of the formulation. Melatonin solution (Mel), Mel-LNC, and LNC did not have significant effects on cell viability or DNA damage. Pre-treatment with Mel-LNC enhanced cell viability and showed a remarkable reduction in % DNA in tail compared to the PQ group; this was not observed in cells pre-treated with Mel. PQ induces oxidative DNA damage detected with the enzyme-modified comet assay. Mel-LNC reduced this damage more effectively than did Mel. In summary, Mel-LNC is better than Mel at protecting A549 cells from the cytotoxic and genotoxic effects of PQ. © 2015 Elsevier B.V. Source

Uribe A.,University of Los Andes, Colombia | Mateus H.E.,El Rosario University | Prieto J.C.,Pontifical Xavierian University | Palacios M.F.,Pontifical Xavierian University | And 4 more authors.
Gene | Year: 2015

Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal α-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions. © 2015 Elsevier B.V. Source

Lagranha V.L.,Federal University of Rio Grande do Sul | Matte U.,Centro Of Terapia Genica | De Carvalho T.G.,Centro Of Terapia Genica | Seminotti B.,Federal University of Rio Grande do Sul | And 6 more authors.
PLoS ONE | Year: 2014

We determined mRNA expression of the ionotropic glutamate receptors NMDA (NR1, NR2A and NR2B subunits), AMPA (GluR2 subunit) and kainate (GluR6 subunit), as well as of the glutamate transporters GLAST and GLT1 in cerebral cortex and striatum of wild type (WT) and glutaryl-CoA dehydrogenase deficient (Gchh -/-) mice aged 7, 30 and 60 days. The protein expression levels of some of these membrane proteins were also measured. Overexpression of NR2A and NR2B in striatum and of GluR2 and GluR6 in cerebral cortex was observed in 7-day-old Gcdh-/-. There was also an increase of mRNA expression of all NMDA subunits in cerebral cortex and of NR2A and NR2B in striatum of 30-day-old Gcdh-/- mice. At 60 days of life, all ionotropic receptors were overexpressed in cerebral cortex and striatum of Gcdh-/- mice. Higher expression of GLAST and GLT1 transporters was also verified in cerebral cortex and striatum of Gcdh-/- mice aged 30 and 60 days, whereas at 7 days of life GLAST was overexpressed only in striatum from this mutant mice. Furthermore, high lysine intake induced mRNA overexpression of NR2A, NR2B and GLAST transcripts in striatum, as well as of GluR2 and GluR6 in both striatum and cerebral cortex of Gcdh-/- mice. Finally, we found that the protein expression of NR2A, NR2B, GLT1 and GLAST were significantly greater in cerebral cortex of Gcdh-/- mice, whereas NR2B and GLT1 was similarly enhanced in striatum, implying that these transcripts were translated into their products. These results provide evidence that glutamate receptor and transporter expression is higher in Gcdh-/- mice and that these alterations may be involved in the pathophysiology of GA I and possibly explain, at least in part, the vulnerability of striatum and cerebral cortex to injury in patients affected by GA I. © 2014 Lagranha et al. Source

Discover hidden collaborations