Time filter

Source Type

Brescia, Italy

Konig J.,Medical University of Graz | Huppertz B.,Medical University of Graz | Desoye G.,Medical University of Graz | Parolini O.,Centro Of Ricerca E Menni | And 5 more authors.
Stem Cells and Development | Year: 2012

Mesenchymal stromal cells derived from the human amnion (hAMSC) currently play an important role in stem cell research, as they are multipotent cells that can be isolated using noninvasive methods and are immunologically tolerated in vivo. The objective of this study was to evaluate their endothelial differentiation potential with regard to a possible therapeutic use in vascular diseases. hAMSC were isolated from human term placentas and cultured in Dulbecco's modified Eagle's medium (DMEM) (non-induced hAMSC) or endothelial growth medium (EGM-2) (induced hAMSC). Induced hAMSC changed their fibroblast-like toward an endothelial-like morphology, and were able to take up acetylated low-density lipoprotein and form endothelial-like networks in the Matrigel assay. However, they did not express the mature endothelial cell markers von Willebrand factor and vascular endothelial-cadherin. Gene expression analysis revealed that induced hAMSC significantly downregulated pro-angiogenic genes such as tenascin C, Tie-2, vascular endothelial growth factor A (VEGF-A), CD146, and fibroblast growth factor 2 (FGF-2), whereas they significantly upregulated anti-angiogenic genes such as serpinF1, sprouty1, and angioarrestin. Analysis of protein expression confirmed the downregulation of FGF-2 and Tie-2 (27%±8% and 13%±1% of non-induced cells, respectively) and upregulation of the anti-angiogenic protein endostatin (226%±4%). Conditioned media collected from hAMSC enhanced viability of endothelial cells and had a stabilizing effect on endothelial network formation as shown by lactate dehydrogenase and Matrigel assay, respectively. In summary, endothelial induced hAMSC acquired some angiogenic properties but resisted undergoing a complete differentiation into mature endothelial cells by upregulation of anti-angiogenic factors. Nevertheless, they had a survival-enhancing effect on endothelial cells that might be useful in a variety of cell therapy or tissue-engineering approaches. © Copyright 2012, Mary Ann Liebert, Inc. Source

Fierabracci A.,Autoimmunity Laboratory | Lazzari L.,Cell Factory Fondazione | Parolini O.,Centro Of Ricerca E Menni
Expert Opinion on Biological Therapy | Year: 2015

In recent years, multiple studies have investigated the biology and clinical applications of mesenchymal stem cells (MSCs), trying to define their markers, and elucidate their effects in animal models. MSCs are available from different tissues, and the use of placental-derived MSCs (PMSCs) for treating a variety of disorders is on the forefront. Herein, we discuss the most recent findings regarding the standardization of their isolation procedure and phenotype, along with advantages and limitations of their use. We also discuss the safety of the placental cell products, including the issue of senescence and mutagenesis of PMSCs, and efficacy from preclinical studies. © 2015 Informa UK, Ltd. Source

Manuelpillai U.,Monash Institute of Medical Research | Moodley Y.,University of Western Australia | Borlongan C.V.,University of South Florida | Parolini O.,Centro Of Ricerca E Menni
Placenta | Year: 2011

In addition to the placenta, umbilical cord and amniotic fluid, the amniotic membrane is emerging as an immensely valuable and easily accessible source of stem and progenitor cells. This concise review will focus on the stem/progenitor cell properties of human amniotic epithelial and mesenchymal stromal cells and evaluate the effects exerted by these cells and the amniotic membrane on tissue inflammation and fibrosis. © 2011 Elsevier Inc. All rights reserved. Source

Lange-Consiglio A.,University of Milan | Rossi D.,Centro Of Ricerca E Menni | Tassan S.,Private practitioner | Perego R.,University of Milan | And 2 more authors.
Stem Cells and Development | Year: 2013

We have recently demonstrated that heterologous transplantation of horse amniotic membrane-derived mesenchymal cells (AMCs) can be useful for cell therapy applications in tendon diseases, and hypothesized that these cells may promote tendon repair via paracrine-acting molecules targeting inflammatory processes. To test this hypothesis, here we examined the immunomodulatory characteristics of AMCs and of their conditioned medium (AMC-CM) in vitro, and studied the potential therapeutic effect of AMC-CM in thirteen different spontaneous horse tendon and ligament injuries in vivo. Our results demonstrate that AMCs are capable of inhibiting peripheral blood mononuclear cell (PBMC) proliferation after allogenic stimulation either when cocultured in cell-to-cell contact, or when the two cell types are physically separated by a transwell membrane, suggesting that soluble factors are implicated in this phenomenon. Our hypothesis is further supported by the demonstration that PBMC proliferation is inhibited by AMC-CM. In our in vivo studies, no significant adverse effects were observed in treated tendons, and clinical and ultrasonographical evaluation did not reveal evidence of inappropriate tissue or tumor formation. Clinical outcomes were favorable and the significantly lower rate (15.38%) of reinjuries observed compared to untreated animals, suggests that treatment with AMC-CM is very efficacious. In conclusion, this study identifies AMC-CM as a novel therapeutic biological cell-free product for treating horse tendon and ligament diseases. © Copyright 2013, Mary Ann Liebert, Inc. 2013. Source

Lange-Consiglio A.,University of Milan | Corradetti B.,Marche Polytechnic University | Bizzaro D.,Marche Polytechnic University | Magatti M.,Centro Of Ricerca E Menni | And 4 more authors.
Journal of Tissue Engineering and Regenerative Medicine | Year: 2012

The aim of this work was to isolate, for the first time, progenitor-like cells from the epithelial (AECs) and mesenchymal (AMCs) portions of the horse amniotic membrane, and to define the biological properties of these cells. AECs displayed polygonal epithelial morphology, while AMCs were fibroblast-like. Usually, six to eight passages were reached before proliferation decreased, with 13.08 and 26.5 cell population doublings attained after 31days for AECs and AMCs, respectively. Immunocytochemical studies performed at passage 3 (P3) showed that both cell populations were positive for the expression of specific embryonic markers (TRA-1-60, SSEA-3, SSEA-4 and Oct-4). Meanwhile, RT-PCR performed at P1 and P5 showed expression of mesenchymal stem/stromal cell markers (CD29, CD105, CD44 and CD166) with negativity for CD34 at P1, although this marker began to be expressed by P5. The cells also expressed MHC-I at both P1 and P5, but lacked MHC-II expression at P1. Both AECs and AMCs demonstrated high plasticity, differentiating in vitro toward the osteogenic, adipogenic, chondrogenic and neurogenic lineages. Equine amnion-\derived cells could also be frozen and recovered without loss of their functional integrity in terms of morphology, presence of specific stemness markers and differentiation ability, although the renewal capacity was lower than that observed for freshly isolated cells. To investigate potential therapeutic effects and cell tolerance in vivo, horse amnion-derived cells were allogeneically injected into three horses with tendon injuries, resulting in a quick reduction in tendon size and ultrasonographic cross-sectional area measurements. These results suggest that horse amnion-derived cells may be useful for cell therapy applications. © 2011 John Wiley & Sons, Ltd. Source

Discover hidden collaborations