Time filter

Source Type

Marengo G.,La Maddalena Hospital | Cancemi P.,University of Palermo | Pucci-Minafra I.,Centro Of Oncobiologia Sperimentale Cobs
Anticancer Research | Year: 2013

Background: The Human Epidermal Growth Factor Receptor 2 (HER-2), overexpressed in 25-30% of breast carcinomas (BC), is the therapeutic target for trastuzumab, a recombinant humanized monoclonal antibody. The initial response to trastuzumab is often followed by drug-insensitivity within one year. Several hypotheses have been raised to explain this event, but the mechanisms behind the responses to trastuzumab are still unclear. Aim: To study the effects of short and prolonged trastuzumab treatment on the proteomic profiles of HER-2- overexpressing SKBR-3 BC cells. Materials and methods: Cells were treated with trastuzumab to obtain sensitive and resistant clones. The drug effects were evaluated at the phenotypical and proteomic levels. Results: In the trastuzumab-resistant cells the expression of a large amount of proteins, initially affected by treatment, reverted to levels of the untreated cells. Conclusion: The results obtained so far illustrate for the first time a large-scale differential protein expression between trastuzumab-treated and untreated cells, and between trastuzumab-sensitive and resistant cells. We believe that the results obtained will help to increase the knowledge of the molecular effects of trastuzumab and will be useful to better-understand the drug resistance mechanisms. © 2013 Anticancer Research.

Pibiri I.,University of Palermo | Lentini L.,University of Palermo | Melfi R.,University of Palermo | Gallucci G.,University of Palermo | And 5 more authors.
European Journal of Medicinal Chemistry | Year: 2015

Abstract Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importance of H-bonding and stacking π-π interactions. To improve the readthrough activity we changed the fluorine number and position in the PTC124 fluoroaryl moiety. The readthrough ability of these PTC124 derivatives was tested in human cells harboring reporter plasmids with premature stop codons in H2BGFP and FLuc genes as well as in cystic fibrosis (CF) IB3.1 cells with a nonsense mutation. Maintaining low toxicity, three of these molecules showed higher efficacy than PTC124 in the readthrough of the UGA premature stop codon and in recovering the expression of the CFTR protein in IB3.1 cells from cystic fibrosis patient. Molecular dynamics simulations performed with mutated CFTR mRNA fragments and active or inactive derivatives are in agreement with the suggested interaction of PTC124 with mRNA. © 2015 Elsevier Masson SAS.

Costa G.,University of Palermo | Barra V.,University of Palermo | Lentini L.,University of Palermo | Cilluffo D.,University of Palermo | And 2 more authors.
Oncotarget | Year: 2016

Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2'-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DACinduced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects. Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore.

Taibi G.,University of Palermo | Gueli M.C.,University of Palermo | Nicotra C.M.A.,Centro Of Oncobiologia Sperimentale Cobs | Cocciadiferro L.,ARNAS Civico | Carruba G.,ARNAS Civico
Journal of Enzyme Inhibition and Medicinal Chemistry | Year: 2014

Retinoic acid is regarded as the retinol metabolite that controls proliferation and differentiation of epithelial cells. In the present study, we investigated the potential role of xanthine dehydrogenase (XDH) in retinoic acid biosynthesis in human thyroid glandular cells (HTGC). In particular, we observed that cellular retinoids binding proteins (CRBPs) are also implicated in the biosynthetic pathway leading to retinoic acid formation in primary cultures of HTGC, as we have already reported for human mammary epithelial cells (HMEC). After partial protein purification, the enzyme responsible for retinoic acid biosynthesis was identified and quantified as XDH by immunoassay, by its ability to oxidize xanthine to uric acid and its sensitivity to the inhibitory effect of oxypurinol. The evidence of XDH-driven formation of retinoic acid in HTGC cultures further corroborates the potential role of XDH in retinoic acid biosynthesis in the epithelia. © 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted.

Palazzolo G.,ETH Zurich | Albanese N.N.,University of Palermo | Albanese N.N.,Centro Of Oncobiologia Sperimentale Cobs | Di Cara G.,Centro Of Oncobiologia Sperimentale Cobs | And 3 more authors.
Anticancer Research | Year: 2012

Background/Aim: The phenomenon of membrane vesicle-release by neoplastic cells is a growing field of interest in cancer research, due to their potential role in carrying a large array of tumor antigens when secreted into the extracellular medium. In particular, experimental evidence show that at least some of the tumor markers detected in the blood circulation of mammary carcinoma patients are carried by membrane-bound vesicles. Thus, biomarker research in breast cancer can gain great benefits from vesicle characterization. Materials and Methods: Conditioned medium was collected from serum starved MDA-MB-231 sub-confluent cell cultures and exosome-like vesicles (ELVs) were isolated by ultracentrifugation. Ultrastructural analysis of ELVs was performed by transmission electron microscopy (TEM) and the purity of fraction was confirmed by western blotting assays. Proteomic profile of ELVs was carried out by 2 D-PAGE and protein identification performed by MALDI-ToF Mass Spectrometry. Results: On the basis of ultrastructural and immunological characterization, the isolated vesicles have been classified as exosome-like vesicles (ELVs). The proteomic investigation showed a distinctive protein profile of the ELVs, in comparison to the whole cell lisates (WCL) proteome, which could be instrumental for cancer progression. The proteins were clustered into functional categories, according to the current bioinformatics resources and a Venn diagram was constructed based on these clusters. Conclusion: It is reasonable to assume that vesicle production allows neoplastic cells to exert different effects, according to the possible acceptor targets. For instance, vesicles could potentiate the malignant properties of adjacent neoplastic cells or activate non-tumoral cells. Moreover, vesicles could convey signals to immune cells and surrounding stroma cells. The present study may significantly contribute to the knowledge of the vesiculation phenomenon, which is a critical device for trans cellular communication in cancer.

Discover hidden collaborations