Centro Of Investigaciones Energeticas

Madrid, Spain

Centro Of Investigaciones Energeticas

Madrid, Spain

Time filter

Source Type

Aufenvenne K.,University of Munster | Larcher F.,Centro Of Investigaciones Energeticas | Hausser I.,University of Heidelberg | Duarte B.,Centro Of Investigaciones Energeticas | And 6 more authors.
American Journal of Human Genetics | Year: 2013

Transglutaminase-1 (TG1)-deficient autosomal-recessive congenital ichthyosis (ARCI) is a rare and severe genetic skin disease caused by mutations in TGM1. It is characterized by collodion babies at birth, dramatically increased transepidermal water loss (TEWL), and lifelong pronounced scaling. The disease has a tremendous burden, including the problem of stigmatization. Currently, no therapy targeting the molecular cause is available, and the therapeutic situation is deplorable. In this study, we developed the basis for a causative therapy aiming at the delivery of the enzyme to the inner site of the keratinocytes' plasma membrane. We prepared sterically stabilized liposomes with encapsulated recombinant human TG1 (rhTG1) and equipped with a highly cationic lipopeptide vector to mediate cellular uptake. The liposomes overcame the problems of insufficient cutaneous delivery and membrane penetration and provided excellent availability and activity of rhTG1 in primary keratinocytes. To demonstrate the general feasibility of this therapeutic approach in a humanized context, we used a skin-humanized mouse model. Treatment with rhTG1 liposomes resulted in considerable improvement of the ichthyosis phenotype and in normalization of the regenerated ARCI skin: in situ monitoring showed a restoration of TG1 activity, and cholesterol clefts vanished ultrastructurally. Measurement of TEWL revealed a restoration of epidermal barrier function. We regard this aspect as a major advance over available nonspecific approaches making use of, for example, retinoid creams. We conclude that this topical approach is a promising strategy for restoring epidermal integrity and barrier function and provides a causal cure for individuals with TG1 deficiency. © 2013 The American Society of Human Genetics. All rights reserved.


Frecha C.,French Institute of Health and Medical Research | Frecha C.,Ecole Normale Superieure de Lyon | Frecha C.,University of Lyon | Costa C.,French Institute of Health and Medical Research | And 17 more authors.
Blood | Year: 2012

In vivo lentiviral vector (LV)-mediated gene delivery would represent a great step forward in the field of gene therapy. Therefore, we have engineered a novel LV displaying SCF and a mutant cat endogenous retroviral glycoprotein, RDTR. These RDTR/SCF-LVs outperformed RDTR-LVs for transduction of human CD34 + cells (hCD34 +). For in vivo gene therapy, these novel RDTR/SCF-displaying LVs can distinguish between the target hCD34 + cells of interest and nontarget cells. Indeed, they selectively targeted transduction to 30%-40% of the hCD34 + cells in cord blood mononuclear cells and in the unfractionated BM of healthy and Fanconi anemia donors, resulting in the correction of CD34 + cells in the patients. Moreover, RDTR/SCF-LVs targeted transduction to CD34 + cells with 95-fold selectivity compared with T cells in total cord blood. Remarkably, in vivo injection of the RDTR/SCF-LVs into the BM cavity of humanized mice resulted in the highly selective transduction of candidate hCD34 +Lin - HSCs. In conclusion, this new LV will facilitate HSC-based gene therapy by directly targeting these primitive cells in BM aspirates or total cord blood. Most importantly, in the future, RDTR/SCF-LVs might completely obviate ex vivo handling and simplify gene therapy for many hematopoietic defects because of their applicability to direct in vivo inoculation. © 2012 by The American Society of Hematology.


PubMed | Centro Of Investigaciones Energeticas
Type: Journal Article | Journal: Human gene therapy | Year: 2011

The efficacy of gene therapy for the treatment of inherited immunodeficiency has been highlighted in recent clinical trials, although in some cases complicated by insertional mutagenesis and silencing of vector genomes through methylation. To minimize these effects, we have evaluated the use of regulatory elements that confer reliability of gene expression, but also lack potent indiscriminate enhancer activity. The Vav1 proximal promoter is particularly attractive in this regard and may be useful in situations where high-level or complex regulation of gene expression is not necessary. X-linked severe combined immunodeficiency (SCID-X1) is a good candidate for such an approach, particularly as there may be additional disease-related intrinsic risks of leukemogenesis, and where safety is therefore a paramount concern. We have tested whether lentiviral vectors expressing the common cytokine receptor gamma chain under the control of the proximal Vav1 gene promoter are effective for correction of signaling defects and the disease phenotype. Despite low-level gene expression, we observed near-complete restoration of cytokine-mediated STAT5 phosphorylation in a model cell line. Furthermore, at low vector copy number, highly effective T- and B-lymphocyte reconstitution was achieved in vivo in a murine model of SCID-X1, in both primary and secondary graft recipients. This vector configuration deserves further evaluation and consideration for future clinical trials.


PubMed | Centro Of Investigaciones Energeticas
Type: Journal Article | Journal: PloS one | Year: 2011

Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34(+) cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34(+) cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies.


PubMed | Centro Of Investigaciones Energeticas
Type: Journal Article | Journal: Gene therapy | Year: 2011

In utero cell and gene therapies constitute alternative strategies to the postnatal treatment of inherited diseases. Fetal hematopoietic progenitors could be a potential source of donor cells for these strategies. In this study, hematopoietic lineage-negative fetal liver cells from 14.5-day-old fetuses were transduced under different cytokine and culture combinations using a lentiviral vector expressing the enhanced green fluorescent protein (EGFP). When cells were transduced for 6h in the presence of mSCF, hTPO and FLT3-L in retronectin-coated dishes at a multiplicity of infection of 10 transduction units/cell, up to 70% of granulo-macrophage colony-forming cells expressed the EGFP reporter gene. In utero transplantation experiments revealed that conditions leading to high transduction efficiencies were associated with poor engraftments of syngeneic recipients. Significantly, this effect was associated with the detection of a humoral and cellular immunoresponse against the transgenic protein. Moreover, the humoral response against EGFP was detected not only in in utero transplanted recipients but also in the operated mothers, suggesting the maternal origin of the anti-EGFP immunoresponse. These observations reinforce the necessity of carefully studying the potential immunoresponses in future prenatal gene therapy protocols.

Loading Centro Of Investigaciones Energeticas collaborators
Loading Centro Of Investigaciones Energeticas collaborators