Time filter

Source Type

Malini E.,University of Santa Maria in Ecuador | Grossi S.,Uosd Centro Of Diagnostica Genetica E Biochimica Delle Malattie Metaboliche | Deganuto M.,University of Santa Maria in Ecuador | Rosano C.,Patologia Molecolare Integrata A.O.U. IRCSS San Martino IST | And 7 more authors.
European Journal of Human Genetics | Year: 2014

Gaucher disease is the most frequent lysosomal storage disorder due to the deficiency of the acid β-glucosidase, encoded by the GBA gene. In this study, we report the structural and functional characterization of 11 novel GBA alleles. Seven single missense alleles, P159S, N188I, E235K, P245T, W312S, S366R and W381C, and two alleles carrying in cis mutations, (N188S; G265R) and (E326K; D380N), were studied for enzyme activity in transiently transfected cells. All mutants were inactive except the P159S, which retained 15% of wild-type activity. To further characterize the alleles carrying two in cis mutations, we expressed constructs bearing singly each mutation. The presence of G265R or D380N mutations completely abolished enzyme activity, while N188S and E326K mutants retained 25 and 54% of wild-type activity, respectively. Two mutations, affecting the acceptor splice site of introns 5 (c.589-1G>A) and 9 (c.1389-1G>A), led to the synthesis of aberrant mRNA. Unpredictably, family studies showed that two alleles resulted from germline or 'de novo' mutations. These results strengthen the importance of performing a complete and accurate molecular analysis of the GBA gene in order to avoid misleading conclusions and provide a comprehensive functional analysis of new GBA mutations. © 2014 Macmillan Publishers Limited.

Filocamo M.,Uosd Centro Of Diagnostica Genetica E Biochimica Delle Malattie Metaboliche | Baldo C.,Science Laboratorio Of Genetica Umana | Goldwurm S.,Centro Parkinson | Renieri A.,University of Siena | And 7 more authors.
Orphanet Journal of Rare Diseases | Year: 2013

Several examples have always illustrated how access to large numbers of biospecimens and associated data plays a pivotal role in the identification of disease genes and the development of pharmaceuticals. Hence, allowing researchers to access to significant numbers of quality samples and data, genetic biobanks are a powerful tool in basic, translational and clinical research into rare diseases. Recently demand for well-annotated and properly-preserved specimens is growing at a high rate, and is expected to grow for years to come. The best effective solution to this issue is to enhance the potentialities of well-managed biobanks by building a network.Here we report a 5-year experience of the Telethon Network of Genetic Biobanks (TNGB), a non-profit association of Italian repositories created in 2008 to form a virtually unique catalogue of biospecimens and associated data, which presently lists more than 750 rare genetic defects. The process of TNGB harmonisation has been mainly achieved through the adoption of a unique, centrally coordinated, IT infrastructure, which has enabled (i) standardisation of all the TNGB procedures and activities; (ii) creation of an updated TNGB online catalogue, based on minimal data set and controlled terminologies; (iii) sample access policy managed via a shared request control panel at web portal. TNGB has been engaged in disseminating information on its services into both scientific/biomedical - national and international - contexts, as well as associations of patients and families. Indeed, during the last 5-years national and international scientists extensively used the TNGB with different purposes resulting in more than 250 scientific publications. In addition, since its inception the TNGB is an associated member of the Biobanking and Biomolecular Resources Research Infrastructure and recently joined the EuroBioBank network. Moreover, the involvement of patients and families, leading to the formalization of various agreements between TNGB and Patients' Associations, has demonstrated how promoting Biobank services can be instrumental in gaining a critical mass of samples essential for research, as well as, raising awareness, trust and interest of the general public in Biobanks. This article focuses on some fundamental aspects of networking and demonstrates how the translational research benefits from a sustained infrastructure. © 2013 Filocamo et al.; licensee BioMed Central Ltd.

Biancheri R.,Child Neurology and Psychiatry Unit | Grossi S.,Uosd Centro Of Diagnostica Genetica E Biochimica Delle Malattie Metaboliche | Regis S.,Uosd Centro Of Diagnostica Genetica E Biochimica Delle Malattie Metaboliche | Rossi A.,Pediatric Neuroradiology Unit | And 5 more authors.
Clinical Genetics | Year: 2014

Proteolipid protein 1 (PLP1) gene-related disorders due to mutations in the PLP1 include a wide spectrum of X-linked disorders ranging from severe connatal Pelizaeus-Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). Duplications, deletions or point mutations in coding and noncoding regions of the PLP1 gene may occur. We report the clinical, neuroradiologic and molecular findings in six patients from two unrelated families. The affected males showed severe mental retardation, spastic tetraparesis, inability of walking and pes cavus at onset in early infancy. Brain magnetic resonance imaging (MRI) showed hypomyelination and brain atrophy. Nystagmus was never observed. The affected females showed adult-onset progressive spastic paraparesis leading to wheel-chair dependency and subtle white matter changes on brain MRI. Molecular studies in the two families identified two different intronic mutations, the novel c.622+2T>C and the known c.622+1G>A, leading to the skipping of PLP1-exon 4. The clinical presentation of the affected males did not consistently fit in any of the PLP1-related disorder subtypes (i.e., connatal or classic PMD, SPG2 and 'PLP1 null syndrome'), and in addition, the carrier females were symptomatic despite the severe clinical picture of their respective probands. This study provides new insight into the genotype-phenotype correlations of patients with PLP1 splice-site mutations. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Discover hidden collaborations