Entity

Time filter

Source Type


Giovarelli M.,University of Genoa | Giovarelli M.,Centro Of Biotecnologie Avanzate Cba | Bucci G.,Italian Institute of Technology | Pasero M.,University of Genoa | And 3 more authors.
Biochimica et Biophysica Acta - Gene Regulatory Mechanisms | Year: 2013

Understanding the molecular mechanisms that control the balance between multipotency and differentiation is of great importance to elucidate the genesis of both developmental disorders and cell transformation events. To investigate the role of the RNA binding protein KSRP in controlling neural differentiation, we used the P19 embryonal carcinoma cell line that is able to differentiate into neuron-like cells under appropriate culture conditions. We have recently reported that KSRP controls the differentiative fate of multipotent mesenchymal cells owing to its ability to promote decay of unstable transcripts and to favor maturation of selected micro-RNAs (miRNAs) from precursors. Here we report that KSRP silencing in P19 cells favors neural differentiation increasing the expression of neuronal markers. Further, the expression of two master transcriptional regulators of neurogenesis, ASCL1 and JMJD3, was enhanced while the maturation of miR-200 family members from precursors was impaired in KSRP knockdown cells. These molecular changes can contribute to the reshaping of P19 cells transcriptome that follows KSRP silencing. Our data suggests that KSRP function is required to maintain P19 cells in a multipotent undifferentiated state and that its inactivation can orient cells towards neural differentiation. © 2013 Elsevier B.V. Source


Briata P.,Gene Expression Regulation Laboratory | Lin W.-J.,University of Alabama at Birmingham | Giovarelli M.,University of Genoa | Giovarelli M.,Centro Of Biotecnologie Avanzate Cba | And 8 more authors.
Cell Death and Differentiation | Year: 2012

Skeletal myogenesis is orchestrated by distinct regulatory signaling pathways, including PI3K/AKT, that ultimately control muscle gene expression. Recently discovered myogenic micro-RNAs (miRNAs) are deeply implicated in muscle biology. Processing of miRNAs from their primary transcripts is emerging as a major step in the control of miRNA levels and might be well suited to be regulated by extracellular signals. Here we report that the RNA binding protein KSRP is required for the correct processing of primary myogenic miRNAs upon PI3K/AKT activation in myoblasts C2C12 and in the course of injury-induced muscle regeneration, as revealed by Ksrp knock-out mice analysis. PI3K/AKT activation regulates in opposite ways two distinct KSRP functions inhibiting its ability to promote decay of myogenin mRNA and activating its ability to favor maturation of myogenic miRNAs. This dynamic regulatory switch eventually contributes to the activation of the myogenic program. © 2012 Macmillan Publishers Limited All rights reserved. Source

Discover hidden collaborations