Centro Nacional Investigaciones Cardiovasculares CNIC

Madrid, Spain

Centro Nacional Investigaciones Cardiovasculares CNIC

Madrid, Spain
Time filter
Source Type

Mittelbrunn M.,Centro Nacional Investigaciones Cardiovasculares CNIC | Vicente-Manzanares M.,Autonomous University of Madrid | Sanchez-Madrid F.,Centro Nacional Investigaciones Cardiovasculares CNIC | Sanchez-Madrid F.,Autonomous University of Madrid
Traffic | Year: 2015

Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non-polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent-trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia. © 2015 John Wiley and Sons A/S.

PubMed | Centro Nacional Investigaciones Cardiovasculares CNIC, Autonomous University of Madrid and Cell Division and Cancer Group
Type: | Journal: Nature communications | Year: 2016

Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal.

PubMed | Centro Nacional Investigaciones Cardiovasculares CNIC and Autonomous University of Madrid
Type: | Journal: BioEssays : news and reviews in molecular, cellular and developmental biology | Year: 2016

Different protein kinases control signaling emanating from the T cell receptor (TCR) during antigen-specific T cell activation. Mitotic kinases, e.g. Aurora-A, have been widely studied in the context of mitosis due to their role during microtubule (MT) nucleation, becoming critical regulators of cell cycle progression. We have recently described a specific role for Aurora-A kinase in antigenic T cell activation. Blockade of Aurora-A in T cells severely disrupts the dynamics of MTs and CD3-bearing signaling vesicles during T cell activation. Furthermore, Aurora-A deletion impairs the activation of signaling molecules downstream of the TCR. Targeting Aurora-A disturbs the activation of Lck, which is one of the first signals that drive T cell activation in an antigen-dependent manner. This work describes possible models of regulation of Lck by Aurora-A during T cell activation. We also discuss possible roles for Aurora-A in other systems similar to the IS, and its putative functions in cell polarization.

Dashti H.S.,Tufts University | Aslibekyan S.,University of Alabama at Birmingham | Scheer F.A.J.L.,Brigham and Women's Hospital | Scheer F.A.J.L.,Harvard University | And 9 more authors.
American Journal of Hypertension | Year: 2016

BACKGROUND Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. METHODS We examined whether environmental temperature on the day of participants' assessment was associated with BP, using adjusted linear regression models in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) (n = 819) and the Boston Puerto Rican Health Study (BPRHS) (n = 1,248) cohorts. We estimated phenotypic variance in BP by 18 clock genes and examined individual single-nucleotide polymorphism (SNP) associations with BP using an additive genetic model, with further consideration of environmental temperature. RESULTS In GOLDN, each additional 1 °C increase in environmental temperature was associated with 0.18mm Hg lower systolic BP [SBP; β ± SE = -0.18±0.05mm Hg; P = 0.0001] and 0.10mm Hg lower diastolic BP [DBP; -0.10±0.03mm Hg; P = 0.001]. Similar results were seen in the BPRHS for SBP only. Clock genes explained a statistically significant proportion of the variance in SBP [V G/V P ± SE = 0.071±0.03; P = 0.001] in GOLDN, but not in the BPRHS, and we did not observe associations between individual SNPs and BP. Environmental temperature did not influence the identified genetic associations. CONCLUSIONS We identified clock genes that explained a statistically significant proportion of the phenotypic variance in SBP, supporting the importance of the circadian pathway underlying cardiac physiology. Although temperature was associated with BP, it did not affect results with genetic markers in either study. Therefore, it does not appear that temperature measures are necessary for interpreting associations between clock genes and BP. CLINICAL TRIAL REGISTRATION Trials related to this study were registered at clinicaltrials.gov as NCT00083369 (Genetic and Environmental Determinants of Triglycerides) and NCT01231958 (Boston Puerto Rican Health Study). © 2015 Published by Oxford University Press on behalf of American Journal of Hypertension Ltd.

Garaulet M.,University of Murcia | Garaulet M.,Tufts University | Smith C.E.,Tufts University | Gomez-Abellan P.,University of Murcia | And 7 more authors.
Molecular Nutrition and Food Research | Year: 2014

Scope: Despite the solid connection between REV-ERB and obesity, the information about whether genetic variations at this locus may be associated with obesity traits is scarce. Therefore our objective was to study the association between REV-ERB-ALPHA1 rs2314339 and obesity in two independent populations. Methods and results: Participants were 2214 subjects from Spanish Mediterranean (n = 1404) and North American (n = 810) populations. Anthropometric, biochemical, dietary, and genotype analyses were performed. We found novel associations between the REV-ERB-ALPHA1 rs2314339 genotype and obesity in two independent populations: in Spanish Mediterranean and North American groups, the frequency of the minor-allele-carriers (AA+ AG) was significantly lower in the "abdominally obese" group than in those of the "nonabdominally obese" group (p < 0.05). Minor allele carriers had lower probability of abdominal obesity than noncarriers, and the effect was of similar magnitude for both populations (OR ≈ 1.50). There were consistent associations between REV-ERB-ALPHA1 genotype and obesity-related traits (p < 0.05). Energy intake was not significantly associated with REV-ERB-ALPHA1 rs2314339. However, physical activity significantly differed by genotype. A significant interaction between the REV-ERB-ALPHA1 variant and monounsaturated-fatty-acids (MUFA) intake for obesity was also detected in the Mediterranean population. Conclusion: This new discovery highlights the importance of REV-ERB-ALPHA1 in obesity and provides evidence for the connection between our biological clock and obesity-related traits. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bandin C.,University of Murcia | Martinez-Nicolas A.,University of Murcia | Ordovas J.M.,Tufts University | Ordovas J.M.,Centro Nacional Investigaciones Cardiovasculares CNIC | And 6 more authors.
International Journal of Obesity | Year: 2013

Introduction: Genetics is behind our circadian machinery. CLOCK (Circadian Locomotor Output Cycles Kaput) 3111T/C single-nucleotide polymorphism (SNP) has been previously related to obesity and weight loss. However, phenotypic association and functionality of CLOCK 3111 locus is still unknown. The aim of this study was to determine, in free-living conditions, if the presence of CLOCK 3111C in overweight women could be related to (a) circadian disorders, and (b) changes in sleep quality, to improve understanding of the previously demonstrated associations with obesity and reduced weight loss of the C carriers.Methods:Wrist temperature, actimetry and position (TAP) and TAP variables were measured as markers of circadian functionality during 8 consecutive days. A rest-activity and food diary was also completed, whereas sleep quality was determined by domiciliary polysomnography. We recruited 85 women who were overweight with body mass index (BMI) of 28.59±4.30 kg m-2 and age 43±12 years. From this sample, we found that 43 women were carrying the minor allele (C) for CLOCK 3111T/C SNP and 42 women were TT carriers (major allele carriers). Both groups of patients were matched for number, age, obesity parameters and energy intake. Results: Compared with TT subjects, who showed more robust circadian rhythm profiles, patients with the C allele displayed significant circadian abnormalities: lower amplitude and greater fragmentation of the rhythm, a less stable circadian pattern and a significantly weakened circadian function, as assessed by the circadian function index (CFI). C subjects were also less active, started their activities later in the morning and were sleepier during the day, showing a delayed acrophase that characterizes 'evening-type' subjects. Conclusion: C genetic variants in CLOCK 3111T/C display a less robust circadian rhythm than TT and a delayed acrophase that characterizes 'evening-type' subjects. We support the notion that identifying CLOCK genotypes in patients may assist the therapist in characterization of the roots of the metabolic problem. © 2013 Macmillan Publishers Limited.

Garaulet M.,University of Murcia | Gomez-Abellan P.,University of Murcia | Alburquerque-Bejar J.J.,University of Murcia | Lee Y.-C.,Tufts University | And 5 more authors.
International Journal of Obesity | Year: 2013

Background:There is emerging literature demonstrating a relationship between the timing of feeding and weight regulation in animals. However, whether the timing of food intake influences the success of a weight-loss diet in humans is unknown.Objective:To evaluate the role of food timing in weight-loss effectiveness in a sample of 420 individuals who followed a 20-week weight-loss treatment.Methods:Participants (49.5% female subjects; age (mean±s.d.): 42±11 years; BMI: 31.4±5.4 kg m-2) were grouped in early eaters and late eaters, according to the timing of the main meal (lunch in this Mediterranean population). 51% of the subjects were early eaters and 49% were late eaters (lunch time before and after 1500 hours, respectively), energy intake and expenditure, appetite hormones, CLOCK genotype, sleep duration and chronotype were studied.Results:Late lunch eaters lost less weight and displayed a slower weight-loss rate during the 20 weeks of treatment than early eaters (P=0.002). Surprisingly, energy intake, dietary composition, estimated energy expenditure, appetite hormones and sleep duration was similar between both groups. Nevertheless, late eaters were more evening types, had less energetic breakfasts and skipped breakfast more frequently that early eaters (all; P<0.05). CLOCK rs4580704 single nucleotide polymorphism (SNP) associated with the timing of the main meal (P=0.015) with a higher frequency of minor allele (C) carriers among the late eaters (P=0.041). Neither sleep duration, nor CLOCK SNPs or morning/evening chronotype was independently associated with weight loss (all; P>0.05).Conclusions:Eating late may influence the success of weight-loss therapy. Novel therapeutic strategies should incorporate not only the caloric intake and macronutrient distribution-as is classically done-but also the timing of food. © 2013 Macmillan Publishers Limited. All rights reserved.

Rubio-Sastre P.,University of Murcia | Gomez-Abellan P.,University of Murcia | Martinez-Nicolas A.,University of Murcia | Ordovas J.M.,Tufts University | And 4 more authors.
Chronobiology International | Year: 2014

The adequate time to perform physical activity (PA) to maintain optimal circadian system health has not been defined. We studied the influence of morning and evening PA on circadian rhythmicity in 16 women with wrist temperature (WT). Participants performed controlled PA (45 min continuous-running) during 7 days in the morning (MPA) and evening (EPA) and results were compared with a no-exercise-week (C). EPA was characterized by a lower amplitude (evening: 0.028 ± 0.01 °C versus control: 0.038 ± 0.016 °C; p < 0.05) less pronounced second-harmonic (power) (evening: 0.41 ± 0.47 versus morning: 1.04 ± 0.59); and achrophase delay (evening: 06:35 ± 02:14 h versus morning: 04:51 ± 01:11 h; p < 0.05) as compared to MPA and C. Performing PA in the late evening might not be as beneficial as in the morning. © 2014 Informa Healthcare USA, Inc.

Dashti H.S.,Tufts University | Smith C.E.,Tufts University | Lee Y.-C.,Tufts University | Parnell L.D.,Tufts University | And 6 more authors.
Chronobiology International | Year: 2014

Dysregulation in the circadian system induced by variants of clock genes has been associated with type 2 diabetes. Evidence for the role of cryptochromes, core components of the system, in regulating glucose homeostasis is not supported by CRY1 candidate gene association studies for diabetes and insulin resistance in human, suggesting possible dietary influences. The purpose of this study was to test for interactions between a CRY1 polymorphism, rs2287161, and carbohydrate intake on insulin resistance in two independent populations: a Mediterranean (n = 728) and an European origin North American population (n = 820). Linear regression interaction models were performed in two populations to test for gene-diet interactions on fasting insulin and glucose and two insulin-related traits, homeostasis model assessment of insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI). In addition, fixed effects meta-analyses for these interactions were performed. Cohort-specific interaction analyses showed significant interactions between the CRY1 variant and dietary carbohydrates for insulin resistance in both populations (p < 0.05). Findings from the meta-analyses of carbohydrate-single nucleotide polymorphism interactions indicated that an increase in carbohydrate intake (% of energy intake) was associated with a significant increase in HOMA-IR (p = 0.011), fasting insulin (p = 0.007) and a decrease in QUICKI (p = 0.028), only among individuals homozygous for the minor C allele. This novel finding supports the link between the circadian system and glucose metabolism and suggests the importance this CRY1 locus in developing personalized nutrition programs aimed at reducing insulin resistance and diabetes risk. © 2014 Informa Healthcare USA, Inc. All rights reserved.

Gomez-Abellan P.,University of Murcia | Diez-Noguera A.,University of Barcelona | Madrid J.A.,University of Murcia | Lujan J.A.,University of Murcia | And 4 more authors.
PLoS ONE | Year: 2012

Aims: to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods: VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results: CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions: 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. © 2012 Gómez-Abellán et al.

Loading Centro Nacional Investigaciones Cardiovasculares CNIC collaborators
Loading Centro Nacional Investigaciones Cardiovasculares CNIC collaborators