Centro Interdisciplinario Of Neurociencias Of Valparaiso

Valparaíso, Chile

Centro Interdisciplinario Of Neurociencias Of Valparaiso

Valparaíso, Chile
Time filter
Source Type

Plotkin L.I.,Indiana University | Plotkin L.I.,Roudebush Veterans Administration Medical Center | Plotkin L.I.,Indiana Center for Musculoskeletal Health | Davis H.M.,Indiana University | And 3 more authors.
Current Osteoporosis Reports | Year: 2017

Purpose of review: To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. Recent findings: Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. Summary: In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases. © 2017 Springer Science+Business Media New York

Yi C.,The Interdisciplinary Center | Yi C.,National University of Singapore | Ezan P.,The Interdisciplinary Center | Fernandez P.,University of Santiago de Chile | And 6 more authors.
GLIA | Year: 2017

The contribution of reactive gliosis to the pathological phenotype of Alzheimer's disease (AD) opened the way for therapeutic strategies targeting glial cells instead of neurons. In such context, connexin hemichannels were proposed recently as potential targets since neuronal suffering is alleviated when connexin expression is genetically suppressed in astrocytes of a murine model of AD. Here, we show that boldine, an alkaloid from the boldo tree, inhibited hemichannel activity in astrocytes and microglia without affecting gap junctional communication in culture and acute hippocampal slices. Long-term oral administration of boldine in AD mice prevented the increase in glial hemichannel activity, astrocytic Ca2+ signal, ATP and glutamate release and alleviated hippocampal neuronal suffering. These findings highlight the important pathological role of hemichannels in AD mice. The neuroprotective effect of boldine treatment might provide the basis for future pharmacological strategies that target glial hemichannels to reduce neuronal damage in neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

Cea L.A.,University of Chile | Balboa E.,University of Santiago de Chile | Puebla C.,University of Santiago de Chile | Puebla C.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | And 9 more authors.
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2016

Long-term treatment with high glucocorticoid doses induces skeletal muscle atrophy. However, the molecular mechanism of such atrophy remains unclear. We evaluated the possible involvement of connexin-based hemichannels (Cx HCs) in muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, on control (Cx43fl/flCx45fl/fl) and Cx43/Cx45 expression-deficient (Cx43fl/flCx45fl/fl:Myo-Cre) skeletal myofibers. Myofibers of Cx43fl/flCx45fl/fl mice treated with DEX (5 h) expressed several proteins that form non-selective membrane channels (Cx39, Cx43, Cx45, Panx1, P2X7 receptor and TRPV2). After 5 h DEX treatment in vivo, myofibers of Cx43fl/flCx45fl/fl mice showed Evans blue uptake, which was absent in myofibers of Cx43fl/flCx45fl/fl:Myo-Cre mice. Similar results were obtained in vitro using ethidium as an HC permeability probe, and DEX-induced dye uptake in control myofibers was blocked by P2X7 receptor inhibitors. DEX also induced a significant increase in basal intracellular Ca2 + signal and a reduction in resting membrane potential in Cx43fl/flCx45fl/fl myofibers, changes that were not elicited by myofibers deficient in Cx43/Cx45 expression. Moreover, treatment with DEX induced NFκB activation and increased mRNA levels of TNF-α in control but not in Cx43/Cx45 expression-deficient myofibers. Finally, a prolonged DEX treatment (7 days) increased atrogin-1 and Murf-1 and reduced the cross sectional area of Cx43fl/flCx45fl/fl myofibers, but these parameters remained unaffected in Cx43fl/flCx45fl/fl:Myo-Cre myofibers. Therefore, DEX-induced expression of Cx43 and Cx45 plays a critical role in early sarcolemma changes that lead to atrophy. Consequently, this side effect of chronic glucocorticoid treatment might be avoided by co-administration with a Cx HC blocker. © 2016

Cea L.A.,University of Chile | Cea L.A.,University of Santiago de Chile | Puebla C.,University of Santiago de Chile | Puebla C.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | And 18 more authors.
Cellular and Molecular Life Sciences | Year: 2016

Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43fl/flCx45fl/fl:Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca2+ levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43fl/flCx45fl/fl:Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43fl/flCx45fl/fl:Myo-Cre mice was significantly better than that of control mdx Cx43fl/flCx45fl/fl mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD. © 2016 Springer International Publishing

Gonzalez A.,Autonomous University of Barcelona | Gonzalez A.,Andrés Bello University | Perez-Acle T.,University of Chile | Perez-Acle T.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | And 2 more authors.
PLoS ONE | Year: 2011

The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β 1 and β 2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process. © 2011 González et al.

Orellana J.A.,Rutgers University | Saez J.C.,University of Santiago de Chile | Saez J.C.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | Bennett M.V.L.,Yeshiva University | And 3 more authors.
Journal of Neurochemistry | Year: 2014

Human immunodeficiency virus-1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV-infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV-infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV-induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf-1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1-dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC-dependent mechanism that contributes to the brain pathogenesis observed in HIV-infected individuals. © 2013 International Society for Neurochemistry.

Garcia I.E.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | Maripillan J.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | Jara O.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | Ceriani R.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | And 9 more authors.
Journal of Investigative Dermatology | Year: 2015

Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca 2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. © 2015 The Society for Investigative Dermatology.

Graham Z.A.,Spinal USA | Graham Z.A.,Mount Sinai School of Medicine | Collier L.,Spinal USA | Peng Y.,Spinal USA | And 10 more authors.
Journal of Neurotrauma | Year: 2016

Myostatin (MST) is a potent regulator of muscle growth and size. Spinal cord injury (SCI) results in marked atrophy of muscle below the level of injury. Currently, there is no effective pharmaceutical treatment available to prevent sublesional muscle atrophy post-SCI. To determine whether inhibition of MST with a soluble activin IIB receptor (RAP-031) prevents sublesional SCI-induced muscle atrophy, mice were randomly assigned to the following groups: Sham-SCI; SCI+Vehicle group (SCI-VEH); and SCI+RAP-031 (SCI-RAP-031). SCI was induced by complete transection at thoracic level 10. Animals were euthanized at 56 days post-surgery. RAP-031 reduced, but did not prevent, body weight loss post-SCI. RAP-031 increased total lean tissue mass compared to SCI-VEH (14.8%). RAP-031 increased forelimb muscle mass post-SCI by 38% and 19% for biceps and triceps, respectively (p < 0.001). There were no differences in hindlimb muscle weights between the RAP-031 and SCI-VEH groups. In the gastrocnemius, messenger RNA (mRNA) expression was elevated for interleukin (IL)-6 (8-fold), IL-1β (3-fold), and tumor necrosis factor alpha (8-fold) in the SCI-VEH, compared to the Sham group. Muscle RING finger protein 1 mRNA was 2-fold greater in the RAP-031 group, compared to Sham-SCI. RAP-031 did not influence cytokine expression. Bone mineral density of the distal femur and proximal tibia were decreased post-SCI (-26% and -28%, respectively) and were not altered by RAP-031. In conclusion, MST inhibition increased supralesional muscle mass, but did not prevent sublesional muscle or bone loss, or the inflammation in paralyzed muscle. © Mary Ann Liebert, Inc. 2016.

Le H.T.,University of British Columbia | Sin W.C.,University of British Columbia | Lozinsky S.,University of British Columbia | Bechberger J.,University of British Columbia | And 7 more authors.
Journal of Biological Chemistry | Year: 2014

Oxidative stress induced by reactive oxygen species (ROS) is associated with various neurological disorders including aging, neurodegenerative diseases, as well as traumatic and ischemic insults. Astrocytes have an important role in the anti-oxidative defense in the brain. The gap junction protein connexin43 (Cx43) forms intercellular channels as well as hemichannels in astrocytes. In the present study, we investigated the contribution of Cx43 to astrocytic death induced by the ROS hydrogen peroxide (H2O2) and the mechanism by which Cx43 exerts its effects. Lack of Cx43 expression or blockage of Cx43 channels resulted in increased ROS-induced astrocytic death, supporting a cell protective effect of functional Cx43 channels. H2O2 transiently increased hemichannel activity, but reduced gap junction intercellular communication (GJIC). GJIC in wild-type astrocytes recovered after 7 h, but was absent in Cx43 knock-out astrocytes. Blockage of Cx43 hemichannels incompletely inhibited H2O2-induced hemichannel activity, indicating the presence of other hemichannel proteins. Panx1, which is predicted to be a major hemichannel contributor in astrocytes, did not appear to have any cell protective effect from H2O2 insults. Our data suggest that GJIC is important for Cx43-mediated ROS resistance. In contrast to hypoxia/reoxygenation, H2O2 treatment decreased the ratio of the hypophosphorylated isoform to total Cx43 level. Cx43 has been reported to promote astrocytic death induced by hypoxia/reoxygenation. We therefore speculate the increase in Cx43 dephosphorylation may account for the facilitation of astrocytic death. Our findings suggest that the role of Cx43 in response to cellular stress is dependent on the activation of signaling pathways leading to alteration of Cx43 phosphorylation states. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

Cea L.A.,University of Santiago de Chile | Riquelme M.A.,University of Santiago de Chile | Cisterna B.A.,University of Santiago de Chile | Puebla C.,Centro Interdisciplinario Of Neurociencias Of Valparaiso | And 5 more authors.
Journal of Membrane Biology | Year: 2012

Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca2+ concentration and release of diverse metabolites (e.g., NAD + and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy. © Springer Science+Business Media, LLC 2012.

Loading Centro Interdisciplinario Of Neurociencias Of Valparaiso collaborators
Loading Centro Interdisciplinario Of Neurociencias Of Valparaiso collaborators