Time filter

Source Type

Lauri A.,Centro Cardiologico Monzino CCM | Pompilio G.,Centro Cardiologico Monzino CCM | Capogrossi M.C.,Laboratorio Of Patologia Vascolare
Ageing Research Reviews

Aging is characterized by a progressive decline in organism functions due to the impairment of all organs. The deterioration of both proliferative tissues in liver, skin and the vascular system, as well as of largely post-mitotic organs, such as the heart and brain could be attributed at least in part to cell senescence.In this review we examine the role of mitochondrial dysfunction and mtDNA mutations in cell aging and senescence. Specifically, we address how p53 and telomerase reverse transcriptase (TERT) activity switch their roles from cytoprotective to detrimental and also examine the role of microRNAs in cell aging. The proposed role of Reactive Oxygen Species (ROS), both as mutating agents and as signalling molecules, underlying these processes is also described. © 2014 Elsevier B.V. Source

Bianchessi V.,Centro Cardiologico Monzino CCM | Badi I.,Centro Cardiologico Monzino CCM | Bertolotti M.,Centro Cardiologico Monzino CCM | Nigro P.,Centro Cardiologico Monzino CCM | And 6 more authors.
Journal of Molecular and Cellular Cardiology

Age-associated cardiovascular diseases are at least partially ascribable to vascular cell senescence. Replicative senescence (RS) and stress-induced premature senescence (SIPS) are provoked respectively by endogenous (telomere erosion) and exogenous (H2O2, UV) stimuli resulting in cell cycle arrest in G1 and G2 phases. In both scenarios, mitochondria-derived ROS are important players in senescence initiation. We aimed to define whether a mtDNA-transcribed long-non-coding-RNA (lncRNA), ASncmtRNA-2, has a role in vascular aging and senescence. Aortas of old mice, characterized by increased senescence, showed an increment in ASncmtRNA-2 expression. In vitro analysis of Endothelial Cells (EC) and Vascular Smooth Muscle Cells (VSMC) established that ASncmtRNA-2 is induced in EC, but not in VSMC, during RS. Surprisingly, ASncmtRNA-2 is not upregulated in two different EC SIPS scenarios, treated with H2O2 and UV. The p16 gene displayed similar ASncmtRNA-2 expression patterns, suggesting a possible co-regulation of the two genes. Interestingly, the expression of two miRNAs, hsa-miR-4485 and hsa-miR-1973, with perfect homology to the double strand region of ASncmtRNA-2 and originating at least in part from a mitochondrial transcript, was induced in RS, opening to the possibility that this lncRNA functions as a non-canonical precursor of these miRNAs. Cell cycle analysis of EC transiently over-expressing ASncmtRNA-2 revealed an accumulation of EC in the G2/M phase, but not in the G1 phase. We propose that ASncmtRNA-2 in EC might be involved in the RS establishment by participating in the cell cycle arrest in G2/M phase, possibly through the production of hsa-miR-4485 and hsa-miR-1973. This article is part of a Special Issue entitled: Mitochondria. © 2015 . Source

Discover hidden collaborations