Centro Biologia Molecular Severo Ochoa

Madrid, Spain

Centro Biologia Molecular Severo Ochoa

Madrid, Spain

Time filter

Source Type

PubMed | Centro Biologia Molecular Severo Ochoa
Type: | Journal: Molecular psychiatry | Year: 2016

Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.Molecular Psychiatry advance online publication, 13 September 2016; doi:10.1038/mp.2016.148.


Castro M.,Comillas Pontifical University | van Santen H.M.,Autonomous University of Madrid | van Santen H.M.,Centro Biologia Molecular Severo Ochoa | Ferez M.,Autonomous University of Madrid | And 3 more authors.
Frontiers in Immunology | Year: 2014

T cell activation, initiated by T cell receptor (TCR) mediated recognition of pathogen-derived peptides presented by major histocompatibility complex class I or II molecules (pMHC), shows exquisite specificity and sensitivity, even though the TCR-pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR-pMHC binding and TCR triggering, an open question. We formulate a mathematical model to characterize the pre-clustering of T cell receptors (TCRs) on the surface of T cells, motivated by the experimentally observed distribution of TCR clusters on the surface of naive and memory T cells. We extend a recently introduced stochastic criterion to compute the timescales of T cell responses, assuming that ligand-induced cross-linked TCR is the minimum signaling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favoring the existence of clusters are required to explain the difference between naive and memory T cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models. © 2014 Castro, van Santen, Férez, Alarcón, Lythe and Molina-París.


Guantes R.,Autonomous University of Madrid | Rastrojo A.,Centro Biologia Molecular Severo Ochoa | Neves R.,Weatherall Institute of Molecular Medicine | Neves R.,Center for Neuroscience and Cell Biology | And 4 more authors.
Genome Research | Year: 2015

Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. © 2015 Guantes et al.


Martin M.G.,National University of Cordoba | Pfrieger F.,University of Strasbourg | Dotti C.G.,Centro Biologia Molecular Severo Ochoa
EMBO Reports | Year: 2014

Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell-cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. © 2014 The Authors.


Gomez-Sintes R.,CSIC - Biological Research Center | Ledesma M.D.,Centro Biologia Molecular Severo Ochoa | Boya P.,CSIC - Biological Research Center
Ageing Research Reviews | Year: 2016

Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies. © 2016 Elsevier B.V.


Dotti C.G.,Centro Biologia Molecular Severo Ochoa | Esteban J.A.,Centro Biologia Molecular Severo Ochoa | Ledesma M.D.,Centro Biologia Molecular Severo Ochoa
Frontiers in Neuroanatomy | Year: 2014

Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity. © 2014. Dotti, Esteban and Ledesma.


Gabande-Rodriguez E.,Centro Biologia Molecular Severo Ochoa | Boya P.,Centro Investigaciones Biologicas | Labrador V.,Centro Biologia Molecular Severo Ochoa | Dotti C.G.,Centro Biologia Molecular Severo Ochoa | Ledesma M.D.,Centro Biologia Molecular Severo Ochoa
Cell Death and Differentiation | Year: 2014

Niemann Pick disease type A (NPA), which is caused by loss of function mutations in the acid sphingomyelinase (ASM) gene, is a lysosomal storage disorder leading to neurodegeneration. Yet, lysosomal dysfunction and its consequences in the disease are poorly characterized. Here we show that undegraded molecules build up in neurons of acid sphingomyelinase knockout mice and in fibroblasts from NPA patients in which autophagolysosomes accumulate. The latter is not due to alterations in autophagy initiation or autophagosome-lysosome fusion but because of inefficient autophago-lysosomal clearance. This, in turn, can be explained by lysosomal membrane permeabilization leading to cytosolic release of Cathepsin B. High sphingomyelin (SM) levels account for these effects as they can be induced in control cells on addition of the lipid and reverted on SM-lowering strategies in ASM-deficient cells. These results unveil a relevant role for SM in autophagy modulation and characterize autophagy anomalies in NPA, opening new perspectives for therapeutic interventions. © 2014 Macmillan Publishers Limited All rights reserved.


Arroyo A.I.,Centro Biologia Molecular Severo Ochoa | Camoletto P.G.,Centro Biologia Molecular Severo Ochoa | Camoletto P.G.,University of Turin | Morando L.,University of Turin | And 5 more authors.
EMBO Molecular Medicine | Year: 2014

Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions. © 2014 The Authors.


Perez-Canamas A.,Centro Biologia Molecular Severo Ochoa
Molecular Psychiatry | Year: 2016

Niemann–Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.Molecular Psychiatry advance online publication, 13 September 2016; doi:10.1038/mp.2016.148. © 2016 Macmillan Publishers Limited, part of Springer Nature.


Lalioti V.,Centro Biologia Molecular Severo Ochoa | Hernandez-Tiedra S.,Centro Biologia Molecular Severo Ochoa | Sandoval I.V.,Centro Biologia Molecular Severo Ochoa
Traffic | Year: 2014

In the liver, the P-type ATPase and membrane pump ATP7B plays a crucial role in Cu+ donation to cuproenzymes and in the elimination of excess Cu+. ATP7B is endowed with a COOH-cytoplasmic (DE)XXXLL-type traffic signal. We find that accessory (Lys -3, Trp -2, Ser -1 and Leu +2) and canonical (D -4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu+-regulated cycling of ATP7B between the trans-Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu+ at the TGN. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Loading Centro Biologia Molecular Severo Ochoa collaborators
Loading Centro Biologia Molecular Severo Ochoa collaborators