Time filter

Source Type

Giner-Lamia J.,University of Seville | Lopez-Maury L.,University of Seville | Reyes J.C.,Centro Andaluz Of Biologia Molecular | Florencio F.J.,University of Seville
Plant Physiology | Year: 2012

Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the PI-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen. © 2012 American Society of Plant Biologists. All Rights Reserved.

Hurtado L.,Centro Andaluz Of Biologia Molecular | Caballero C.,Centro Andaluz Of Biologia Molecular | Gavilan M.P.,Centro Andaluz Of Biologia Molecular | Cardenas J.,Centro Andaluz Of Biologia Molecular | And 2 more authors.
Journal of Cell Biology | Year: 2011

Mammalian cells exhibit a frequent pericentrosomal Golgi ribbon organization. In this paper, we show that two AKAP450 N-terminal fragments, both containing the Golgi-binding GM130-interacting domain of AKAP450, dissociated endogenous AKAP450 from the Golgi and inhibited microtubule (MT) nucleation at the Golgi without interfering with centrosomal activity. These two fragments had, however, strikingly different effects on both Golgi apparatus (GA) integrity and positioning, whereas the short fragment induced GA circularization and ribbon fragmentation, the large construct that encompasses an additional p150glued/MT-binding domain induced separation of the Golgi ribbon from the centrosome. These distinct phenotypes arose by specific interference of each fragment with either Golgi-dependent or centrosome-dependent stages of Golgi assembly. We could thus demonstrate that breaking the polarity axis by perturbing GA positioning has a more dramatic effect on directional cell migration than disrupting the Golgi ribbon. Both features, however, were required for ciliogenesis. We thus identified AKAP450 as a key determinant of pericentrosomal Golgi ribbon integrity, positioning, and function in mammalian cells. © 2011 Hurtado et al.

Loading Centro Andaluz Of Biologia Molecular collaborators
Loading Centro Andaluz Of Biologia Molecular collaborators