Entity

Time filter

Source Type


Devos D.P.,University of Heidelberg | Devos D.P.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | Jogler C.,Leibniz Institute | Fuerst J.A.,University of Queensland
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology | Year: 2013

The PVC superphylum is a phylogenetically supported collection of various related bacterial phyla that comprise unusual characteristics and traits. The 'PVC' abbreviation derives from Planctomycetes, Verrucomicrobia and Chlamydiae as members of this superphylum, while additional bacterial phyla are related. There has recently been increasing and exciting interest in the cell biology, physiology and ecology of members of this superphylum, including evolutionary implications of the complex cell organization of some species. It is timely that international researchers in the PVC superphylum field met to discuss these developments. The first meeting entirely dedicated to those bacteria, the EMBO workshop "PVC superphylum: Exceptions to the bacterial definition" was held at the Heidelberg University to catalyze the formation of a vital scientific community supporting PVC-bacterial research. More than 45 investigators from more than 20 countries (PIs, senior scientists and students) attended the meeting and produced a great starting point for future collaborative research. This Special Issue will focus on the EMBO-PVC meeting. This Perspective briefly summarizes the history of PVC-research, focusing on the key findings and provides a brief summary of the meeting with a focus on the major questions that arose during discussion and that might influence the research in the years to come. © 2013 Springer Science+Business Media Dordrecht.


Lagutina I.V.,St Jude Childrens Research Hospital | Valentine V.,St Jude Childrens Research Hospital | Picchione F.,St Jude Childrens Research Hospital | Harwood F.,St Jude Childrens Research Hospital | And 5 more authors.
PLoS Genetics | Year: 2015

Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice. © 2015 Lagutina et al.


Muller C.,University of Heidelberg | Maeso I.,University of Oxford | Wittbrodt J.,University of Heidelberg | Martinez-Morales J.R.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja
Scientific Reports | Year: 2013

Vacuolar-type H + ATPases (V-ATPases) are multimeric protein complexes that play a universal role in the acidification of intracellular compartments in eukaryotic cells. We have isolated the recessive medaka mutation tintachina (tch), which carries an inactivating modification of the conserved glycine residue (G75R) of the proton pump subunit atp6v1Ba/vatB1. Mutant embryos show penetrant pigmentation defects, massive brain apoptosis and lethality before hatching. Strikingly, an equivalent mutation in atp6v1B1 (G78R) has been reported in a family of patients suffering from distal renal tubular acidosis (dRTA), a hereditary disease that causes metabolic acidosis due to impaired kidney function. This poses the question as to how molecularly identical mutations result in markedly different phenotypes in two vertebrate species. Our work offers an explanation for this phenomenon. We propose that, after successive rounds of whole-genome duplication, the emergence of paralogous copies allowed the divergence of the atp6v1B cis-regulatory control in different vertebrate groups.


Bogdanovic O.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | Delfino-Machin M.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | Nicolas-Perez M.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | Gavilan M.,CABIMER CSIC | And 6 more authors.
Developmental Cell | Year: 2012

Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show how the transmembrane protein Opo, previously described for its essential role during optic cup folding, plays a fundamental role in this process. Through interaction with the PTB domain of the clathrin adaptors Numb and Numbl via an integrin-like NPxF motif, Opo antagonizes Numb/Numbl function and acts as a negative regulator of integrin endocytosis in vivo. Accordingly, numb/numbl gain-of-function experiments in teleost embryos mimic the retinal malformations observed in opo mutants. We propose that developmental regulator Opo enables polarized integrin localization by modulating Numb/Numbl, thus directing the basal constriction that shapes the vertebrate retina epithelium. Polarized trafficking of adhesion receptors plays a pivotal role in tissue morphogenesis. Bogdanovic et al. find that Opo competes the clathrin adaptors Numb/Numbl away from integrins, restraining integrin endocytosis and allowing optic-cup folding. These findings provide a link between polarized internalization of integrins and the morphogenesis of an entire organ. © 2012 Elsevier Inc.


Tena J.J.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | Gonzalez-Aguilera C.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | Fernandez-Minan A.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | Vazquez-Marin J.,Centro Andaluz Of Biologia Del Desarrollo Csic Upo Ja | And 8 more authors.
Genome Research | Year: 2014

The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer's formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.e., during mid-embryogenesis). According to the hourglass model, body plan conservation would depend on constrained molecular mechanisms operating at this period. More recently, comparative transcriptomic analyses have provided conclusive evidence that such molecular constraints exist. Examining cis-regulatory architecture during the phylotypic period is essential to understand the evolutionary source of body plan stability. Here we compare transcriptomes and key epigenetic marks (H3K4me3 and H3K27ac) from medaka (Oryzias latipes) and zebrafish (Danio rerio), two distantly related teleosts separated by an evolutionary distance of 115-200 Myr. We show that comparison of transcriptome profiles correlates with anatomical similarities and heterochronies observed at the phylotypic stage. Through comparative epigenomics, we uncover a pool of conserved regulatory regions (≈700), which are active during the vertebrate phylotypic period in both species. Moreover, we show that their neighboring genes encode mainly transcription factors with fundamental roles in tissue specification. We postulate that these regulatory regions, active in both teleost genomes, represent key constrained nodes of the gene networks that sustain the vertebrate body plan. © 2014 Tena et al.

Discover hidden collaborations