Entity

Time filter

Source Type


Amore G.,Stazione Zoologica Anton Dohrn | Casares F.,Centro Andaluz Of Biologia Del Desarrollo Cabd
Developmental Biology | Year: 2010

Organ development is a complex process in which the activity of scores of interacting transcription factors and signaling pathways need to be integrated with proliferative growth. Developmental gene regulatory networks (GRNs) allow capturing essential regulatory pathways at a systems-level and provide an effective way of approaching such complexity. However typical GRNs studies focus on very early embryonic stages (usually pre-gastrulation) or late stages, when there is little or no cell proliferation, and therefore do not consider how organ growth is integrated in the developmental process. This can be conveniently investigated in the Drosophila melanogaster eye primordium. Here we present a working model meant to illustrate how during a critical period, the second larval stage, changes in cells' proliferative pattern are coordinated with the initiation of the Retinal Determination (RD) gene program. Such changes are regulated in response to two different sources of signal (Wnt1/. wg and BMP2/4/. dpp) produced by the anterior and posterior ends of the primordium, respectively. The dpp signaling is necessary to trigger the RD program. However in order for it to be effective, cells receiving Dpp have to be out of the wg signaling range. This is obtained thanks to the proliferative growth that precedes the onset of RD expression. With this network model many of the gene regulatory steps previously known to participate in growth and patterning are linked. Analysis of the model highlights a few essential regulatory principles, as well as poses new questions. In addition, these principles might operate during the growth and patterning of other organs. © 2010 Elsevier Inc. Source


Torres-Nunez E.,CSIC - Institute of Marine Research | Cal L.,CSIC - Institute of Marine Research | Suarez-Bregua P.,CSIC - Institute of Marine Research | Suarez-Bregua P.,University of Vigo | And 4 more authors.
Developmental Dynamics | Year: 2015

Background: SPARC/osteonectin is an evolutionarily conserved matricellular protein that modulates cell-matrix interaction and cell function. In all vertebrates, SPARC is dynamically expressed during embryogenesis. However, the precise function of SPARC and the regulatory elements required for its expression in particular during early embryogenesis are largely unknown. Results: The present study was undertaken to explore the molecular mechanisms that regulate sparc gene expression by in vivo functional characterization of the sparc promoter and identification of possible putative regulatory elements that govern basal promoter activity. We report here transient expression analyses of eGFP expression from transgenic zebrafish containing a Sparc-iTol2-eGFP-BAC and/or 7.25 kb-sparc-Tol2-eGFP constructs. eGFP expression was specifically found in the notochord, otic vesicle, fin fold, intermediate cell mass, and olfactory placode of BAC and Tol2 transposon vectors injected embryos. Deletion analysis revealed that promoter activity resides in the unique 5′-untranslated intronic region. Computer-based analysis revealed a putative CpG island immediately proximal to the translation start site within the intron sequence. Global inhibition of methylation with 5-Aza-2-deoxycytidine promoted sparc expression in association with decreasing CpG methylation. Conclusions: Taken together, these data identify a contributory role for DNA methylation in regulating sparc expression in zebrafish embryogenesis. © 2015 Wiley Periodicals, Inc. Source


Santos J.S.,Centro Andaluz Of Biologia Del Desarrollo Cabd | Santos J.S.,Institute Biologia Molecular e Celular IBMC | Santos J.S.,Abel Salazar Biomedical Sciences Institute | Fonseca N.A.,INESC Porto | And 4 more authors.
Developmental Dynamics | Year: 2010

The tshz genes comprise a family of evolutionarily conserved transcription factors. However, despite the major role played by Drosophila tsh during the development of the fruit fly, the expression and function of other tshz genes have been analyzed in a very limited set of organisms and, therefore, our current knowledge of these genes is still fragmentary. In this study, we perform detailed phylogenetic analyses of the tshz genes, identify the members of this gene family in zebrafish and describe the developmental expressions of two of them, tshz2 and tshz3b, and compare them with meis1, meis2.1, meis2.2, pax6a, and pax6b expression patterns. The expression patterns of these genes define a complex set of coexpression domains in the developing zebrafish brain where their gene products have the potential to interact. © 2010 Wiley-Liss, Inc. Source


Cornes E.,Bellvitge Biomedical Research Institute | Cornes E.,University of Bordeaux 1 | Cornes E.,French Institute of Health and Medical Research | Porta-De-La-Riva M.,Bellvitge Biomedical Research Institute | And 14 more authors.
RNA | Year: 2015

Genes coding for members of the Sm-like (LSm) protein family are conserved through evolution from prokaryotes to humans. These proteins have been described as forming homo-or heterocomplexes implicated in a broad range of RNA-related functions. To date, the nuclear LSm2-8 and the cytoplasmic LSm1-7 heteroheptamers are the best characterized complexes in eukaryotes. Through a comprehensive functional study of the LSm family members, we found that lsm-1 and lsm-3 are not essential for C. elegans viability, but their perturbation, by RNAi or mutations, produces defects in development, reproduction, and motility. We further investigated the function of lsm-1, which encodes the distinctive protein of the cytoplasmic complex. RNA-seq analysis of lsm-1 mutants suggests that they have impaired Insulin/IGF-1 signaling (IIS), which is conserved in metazoans and involved in the response to various types of stress through the action of the FOXO transcription factor DAF-16. Further analysis using a DAF-16:GFP reporter indicated that heat stress-induced translocation of DAF-16 to the nuclei is dependent on lsm-1. Consistent with this, we observed that lsm-1 mutants display heightened sensitivity to thermal stress and starvation, while overexpression of lsm-1 has the opposite effect. We also observed that under stress, cytoplasmic LSm proteins aggregate into granules in an LSM-1-dependent manner. Moreover, we found that lsm-1 and lsm-3 are required for other processes regulated by the IIS pathway, such as aging and pathogen resistance. © 2015 Mefferd et al. Source


Brockmann A.,Centro Andaluz Of Biologia Del Desarrollo Cabd | Dominguez-Cejudo M.A.,Centro Andaluz Of Biologia Del Desarrollo Cabd | Amore G.,Stazione Zoologica Anton Dohrn | Casares F.,Centro Andaluz Of Biologia Del Desarrollo Cabd
Developmental Dynamics | Year: 2011

The retinal determination gene network (RDGN) constitutes a paradigm of a gene network controlling organ specification and growth. In this study, we probed the RDGN in the Drosophila ocelli, a set of simple eyes located on the fly's dorsal head, by studying the expression, regulation, and function of toy, hth, eya, and so, members of the Pax6, Meis, Eya, and Six gene families. Our results highlight the role of the pax6 gene toy, together with the hh signaling pathway, in the initiation of eya and so expression; the engagement of eya and so in a feedback loop necessary for their full expression; and the interplay between hh signaling and hth as a mechanism of organ size control, as general regulatory steps in the specification of visual organs. © 2010 Wiley-Liss, Inc. Source

Discover hidden collaborations