Time filter

Source Type

Letizia A.,Institute Of Biologia Molecular Of Barcelona | Sotillos S.,Centro Andaluz Of Biologia Del Desarrollo | Llimargas M.,Institute Of Biologia Molecular Of Barcelona
Journal of Cell Science | Year: 2011

Many epithelial tissues undergo extensive remodelling during morphogenesis. How their epithelial features, such as apicobasal polarity or adhesion, are maintained and remodelled and how adhesion and polarity proteins contribute to morphogenesis are two important questions in development. Here, we approach these issues by investigating the role of the apical determinant protein Crumbs (Crb) during the morphogenesis of the embryonic Drosophila tracheal system. Crb accumulates differentially throughout tracheal development and is required for different tracheal events. The earliest requirement for Crb is for tracheal invagination, which is preceded by an enhanced accumulation of Crb in the invagination domain. There, Crb, acting in parallel with the epidermal growth factor receptor (Egfr) pathway, is required for tracheal cell apical constriction and for organising an actomyosin complex, which we propose is mediated by Crb recruitment of moesin (Moe). The ability of a Crb isoform unable to rescue polarity in crb mutants to otherwise rescue their invagination phenotype, and the converse inability of a FERM-binding domain mutant Crb to rescue faulty invagination, support our hypothesis that it is the absence of Crb-dependent Moe enrichment, and not the polarity defect, that mainly underlies the crb invagination phenotype. This hypothesis is supported by the phenotype of lethal giant larvae (lgl); crb double mutants. These results unveil a link between Crb and the organisation of the actin cytoskeleton during morphogenesis.


Maeso I.,University of Barcelona | Maeso I.,University of Oxford | Irimia M.,University of Barcelona | Irimia M.,University of Toronto | And 8 more authors.
Genome Research | Year: 2012

Developmental genes are regulated by complex, distantly located cis-regulatory modules (CRMs), often forming genomic regulatory blocks (GRBs) that are conserved among vertebrates and among insects. We have investigated GRBs associated with Iroquois homeobox genes in 39 metazoans. Despite 600 million years of independent evolution, Iroquois genes are linked to ankyrin-repeat-containing Sowah genes in nearly all studied bilaterians. We show that Iroquois-specific CRMs populate the Sowah locus, suggesting that regulatory constraints underlie the maintenance of the Iroquois-Sowah syntenic block. Surprisingly, tetrapod Sowah orthologs are intronless and not associated with Iroquois; however, teleost and elephant shark data demonstrate that this is a derived feature, and that many Iroquois-CRMs were ancestrally located within Sowah introns. Retroposition, gene, and genome duplication have allowed selective elimination of Sowah exons from the Iroquois regulatory landscape while keeping associated CRMs, resulting in large associated gene deserts. These results highlight the importance of CRMs in imposing constraints to genome architecture, even across large phylogenetic distances, and of gene duplication-mediated genetic redundancy to disentangle these constraints, increasing genomic plasticity. © 2012 by Cold Spring Harbor Laboratory Press.


PubMed | Centro Andaluz Of Biologia Del Desarrollo and University of Heidelberg
Type: | Journal: eLife | Year: 2016

Contractile actomyosin networks have been shown to power tissue morphogenesis. Although the basic cellular machinery generating mechanical tension appears largely conserved, tensions propagate in unique ways within each tissue. Here we use the vertebrate eye as a paradigm to investigate how tensions are generated and transmitted during the folding of a neuroepithelial layer. We record membrane pulsatile behavior and actomyosin dynamics during zebrafish optic cup morphogenesis by live imaging. We show that retinal neuroblasts undergo fast oscillations and that myosin condensation correlates with episodic contractions that progressively reduce basal feet area. Interference with


Pittman A.M.,Institute of Cancer Research | Naranjo S.,Centro Andaluz Of Biologia Del Desarrollo | Jalava S.E.,University of Tampere | Twiss P.,Institute of Cancer Research | And 16 more authors.
PLoS Genetics | Year: 2010

Common genetic variation at human 8q23.3 is significantly associated with colorectal cancer (CRC) risk. To elucidate the basis of this association we compared the frequency of common variants at 8q23.3 in 1,964 CRC cases and 2,081 healthy controls. Reporter gene studies showed that the single nucleotide polymorphism rs16888589 acts as an allele-specific transcriptional repressor. Chromosome conformation capture (3C) analysis demonstrated that the genomic region harboring rs16888589 interacts with the promoter of gene for eukaryotic translation initiation factor 3, subunit H (EIF3H). We show that increased expression of EIF3H gene increases CRC growth and invasiveness thereby providing a biological mechanism for the 8q23.3 association. These data provide evidence for a functional basis for the non-coding risk variant rs16888589 at 8q23.3 and provides novel insight into the etiological basis of CRC. © 2010 Pittman et al.


Gavilan M.P.,Centro Andaluz Of Biologia Molecular Y Medicina Regenerativa Cabimer | Arjona M.,Centro Andaluz Of Biologia Molecular Y Medicina Regenerativa Cabimer | Zurbano A.,Centro Andaluz Of Biologia Molecular Y Medicina Regenerativa Cabimer | Formstecher E.,Hybrigenics | And 3 more authors.
PLoS Biology | Year: 2015

Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. © 2015 Gavilan et al.


Sebe-Pedros A.,Institute Of Biologia Eeolutiea | Ariza-Cosano A.,Centro Andaluz Of Biologia Del Desarrollo | Weirauch M.T.,Cincinnati Childrens Hospital Medical Center | Leininger S.,Sars International Center for Marine Molecular Biology | And 8 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

Deèelopmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusièely present in metazoans. Here, we report the presence of T-box genes in seèeral nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family dièersified at the onset of Metazoa. Moreoèer, we demonstrate functional conserèation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laeèis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieèed by interaction with alternatièe cofactors, as opposed to differences in binding specificity.


Sotillos S.,Centro Andaluz Of Biologia Del Desarrollo | Krahn M.,Justus Liebig University | Krahn M.,University of Regensburg | Espinosa-Vazquez J.M.,Centro Andaluz Of Biologia Del Desarrollo | Hombria J.C.-G.,Centro Andaluz Of Biologia Del Desarrollo
Development (Cambridge) | Year: 2013

Intercellular communication depends on the correct organization of the signal transduction complexes. In many signaling pathways, the mechanisms controlling the overall cell polarity also localize components of these pathways to different domains of the plasma membrane. In the Drosophila ectoderm, the JAK/STAT pathway components are highly polarized with apical localization of the receptor, the associated kinase and the STAT92E protein itself. The apical localization of STAT92E is independent of the receptor complex and is due to its direct association with the apical determining protein Bazooka (Baz). Here, we find that Baz-STAT92E interaction depends on the presence of the Drosophila Src kinases. In the absence of Src, STAT92E cannot bind to Baz in cells or in whole embryos, and this correlates with an impairment of JAK/STAT signalling function. We believe that the requirement of Src proteins for STAT92E apical localization is mediated through Baz, as we can co-precipitate Src with Baz but not with STAT92E. This is the first time that a functional link between cell polarity, the JAK/STAT signalling pathway and the Src kinases has been established in a whole organism. © 2013. Published by The Company of Biologists Ltd.


Schraml B.U.,Cancer Research UK Research Institute | Van Blijswijk J.,Cancer Research UK Research Institute | Zelenay S.,Cancer Research UK Research Institute | Whitney P.G.,Cancer Research UK Research Institute | And 8 more authors.
Cell | Year: 2013

Mononuclear phagocytes are classified as macrophages or dendritic cells (DCs) based on cell morphology, phenotype, or select functional properties. However, these attributes are not absolute and often overlap, leading to difficulties in cell-type identification. To circumvent this issue, we describe a mouse model to define DCs based on their ontogenetic descendence from a committed precursor. We show that precursors of mouse conventional DCs, but not other leukocytes, are marked by expression of DNGR-1. Genetic tracing of DNGR-1 expression history specifically marks cells traditionally ascribed to the DC lineage, and this restriction is maintained after inflammation. Notably, in some tissues, cells previously thought to be monocytes/macrophages are in fact descendants from DC precursors. These studies provide an in vivo model for fate mapping of DCs, distinguishing them from other leukocyte lineages, and thus help to unravel the functional complexity of the mononuclear phagocyte system. © 2013 Elsevier Inc.


Lubbe S.J.,Institute of Cancer Research | Pittman A.M.,Institute of Cancer Research | Olver B.,Institute of Cancer Research | Lloyd A.,Institute of Cancer Research | And 6 more authors.
Oncogene | Year: 2012

Common genetic variation at human 14q22.2 tagged by rs4444235 is significantly associated with colorectal cancer (CRC) risk. Re-sequencing was used to comprehensively annotate the 17kb region of strong linkage disequilibrium encompassing rs4444235. Through bioinformatic analyses using H3K4Me1, H3K4Me3, and DNase-I hypersensitivity chromatin signatures and evolutionary conservation we identified seven candidate disease-causing single-nucleotide polymorphisms mapping to six regions within the 17-kb region predicted to have regulatory potential. Reporter gene studies of these regions demonstrated that the element to which rs4444235 maps acts as an allele-specific transcriptional enhancer. Allele-specific expression studies in CRC cell lines heterozygous for rs4444235 showed significantly increased expression of bone morphogenetic protein-4 (BMP4) associated with the risk allele (P < 0.001). These data provide evidence for a functional basis for the non-coding risk variant rs4444235 at 14q22.2 and emphasizes the importance of genetic variation in the BMP pathway genes as determinants of CRC risk. © 2012 Macmillan Publishers Limited All rights reserved.


Moncaut N.,Institute of Cancer Research | Moncaut N.,University College London | Rigby P.W.J.,Institute of Cancer Research | Carvajal J.J.,Centro Andaluz Of Biologia Del Desarrollo
FEBS Journal | Year: 2013

The transcriptional regulatory network that controls the determination and differentiation of skeletal muscle cells in the embryo has at its core the four myogenic regulatory factors (MRFs) Myf5, MyoD, Mrf4 and MyoG. These basic helix-loop-helix transcription factors act by binding, as obligate heterodimers with the ubiquitously expressed E proteins, to the E-box sequence CANNTG. While all skeletal muscle cells have the same underlying function their progenitors arise at many sites in the embryo and it has become apparent that the upstream activators of the cascade differ in these various populations so that it can be switched on by a variety of inductive signals, some of which act by initiating transcription, some by maintaining it. The application of genome-wide approaches has provided important new information as to how the MRFs function to activate the terminal differentiation programme and some of these data provide significant mechanistic insights into questions which have exercised the field for many years. We also consider the emerging roles played by micro-RNAs in the regulation of both upstream activators and terminal differentiation genes. The transcriptional regulatory network that controls the determination and differentiation of skeletal muscle cells has at its core the four myogenic regulatory factors (MRFs): Myf5, MyoD, Mrf4 and MyoG. The application of new genome-wide approaches, including the identification and functional analyses of miRNA regulation, is providing important information as to how the MRFs function to activate the terminal differentiation programme. © 2013 FEBS.

Loading Centro Andaluz Of Biologia Del Desarrollo collaborators
Loading Centro Andaluz Of Biologia Del Desarrollo collaborators