Central Institute for Blood Transfusion

Innsbruck, Austria

Central Institute for Blood Transfusion

Innsbruck, Austria

Time filter

Source Type

Niederstatter H.,Innsbruck Medical University | Berger B.,Innsbruck Medical University | Erhart D.,Innsbruck Medical University | Willuweit S.,Charité - Medical University of Berlin | And 6 more authors.
Forensic Science International: Genetics | Year: 2013

The male-specific region of the human Y chromosome (MSY) is passed down clonally from father to son and mutation is the single driving force for Y-chromosomal diversification. The geographical distribution of MSY variation is non-random. Therefore, Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are of forensic interest, as they can be utilized, e.g. for deducing the bio-geographical origin of biological evidence. This extra information can complement short tandem repeat data in criminal investigations. For forensic applications, however, any targeted marker has to be unequivocally interpretable. Here, we report findings for 17 samples from a population study comprising specimens from ∼3700 men living in Tyrol (Austria), indicating apparent homoplasic mutations at four Y-SNP loci on haplogroup R-M412/L51/S167, R-U152/S28, and L-M20 Y chromosomes. The affected Y-SNPs P41, P37, L202, and L203 mapped to a 37 bp region on Yq11.21. Observing in multiple phylogenetic contexts up to four homoplasic mutations within such a short sequence tract is unlikely to result from a series of independent parallel mutations. Hence, we rather propose X-to-Y gene conversion as a more likely scenario. Practical implications arising from markers exhibiting paralogues on the Y chromosome or sites with a high propensity to recurrent mutation for database searches are addressed. © 2013 Elsevier Ireland Ltd.


Berger B.,Innsbruck Medical University | Niederstatter H.,Innsbruck Medical University | Erhart D.,Innsbruck Medical University | Gassner C.,Central Institute for Blood Transfusion | And 3 more authors.
Forensic Science International: Genetics | Year: 2013

The distribution of Y-chromosomal haplogroup G2a (G-P15) in present-day paternal lineages in Tyrol (Austria) was analyzed by applying a high-density regional sampling scheme that also covered remote mountain areas. There is evidence from ancient genetic data for a high frequency of Y-chromosomal haplogroup G in prehistoric populations of Central Europe, whilst nowadays levels well below 10% are routinely observed. A population sample comprising ∼3700 specimens was analyzed for Y-chromosomal variation by genotyping Y-SNPs and Y-STRs. The set of binary markers included nine SNPs specific for sub-lineages of haplogroup G. The frequency of haplogroup G in 2379 unrelated men born in Tyrol amounted to 11.3%. Nearly all of these Y chromosomes belonged to haplogroup G2a. The main sub-haplogroup within G2a was defined by the SNP L497 (G2a3b1c) and reached a population frequency of 8.6%. Although this average level is higher than reported for other countries the geographical distribution of haplogroup G-L497 showed a differentiated pattern with a clustered distribution within some alpine valleys, where maxima above 40% were found. Both, the estimation of coalescent times and a principle coordinates analysis based on RST values derived from Y-STR haplotypes from different sub-regions of Tyrol revealed evidence for an old settlement history associated with Y chromosomes belonging to haplogroup G in the Tyrolean Alps. © 2013 Elsevier Ireland Ltd.


Berger B.,Innsbruck Medical University | Niederstatter H.,Innsbruck Medical University | Erhart D.,Innsbruck Medical University | Gassner C.,Central Institute for Blood Transfusion | And 3 more authors.
Forensic Science International: Genetics | Year: 2013

The distribution of Y-chromosomal haplogroup G2a (G-P15) in present-day paternal lineages in Tyrol (Austria) was analyzed by applying a high-density regional sampling scheme that also covered remote mountain areas. There is evidence from ancient genetic data for a high frequency of Y-chromosomal haplogroup G in prehistoric populations of Central Europe, whilst nowadays levels well below 10% are routinely observed. A population sample comprising ∼3700 specimens was analyzed for Y-chromosomal variation by genotyping Y-SNPs and Y-STRs. The set of binary markers included nine SNPs specific for sub-lineages of haplogroup G. The frequency of haplogroup G in 2379 unrelated men born in Tyrol amounted to 11.3%. Nearly all of these Y chromosomes belonged to haplogroup G2a. The main sub-haplogroup within G2a was defined by the SNP L497 (G2a3b1c) and reached a population frequency of 8.6%. Although this average level is higher than reported for other countries the geographical distribution of haplogroup G-L497 showed a differentiated pattern with a clustered distribution within some alpine valleys, where maxima above 40% were found. Both, the estimation of coalescent times and a principle coordinates analysis based on RST values derived from Y-STR haplotypes from different sub-regions of Tyrol revealed evidence for an old settlement history associated with Y chromosomes belonging to haplogroup G in the Tyrolean Alps. © 2013 Elsevier Ireland Ltd.

Loading Central Institute for Blood Transfusion collaborators
Loading Central Institute for Blood Transfusion collaborators