Entity

Time filter

Source Type


Sebestova H.,Central European Institute of Technology Veterinary Research Institute | Vozdova M.,Central European Institute of Technology Veterinary Research Institute | Kubickova S.,Central European Institute of Technology Veterinary Research Institute | Cernohorska H.,Central European Institute of Technology Veterinary Research Institute | And 2 more authors.
Chromosoma | Year: 2016

Meiotic recombination between homologous chromosomes is crucial for their correct segregation into gametes and for generating diversity. We compared the frequency and distribution of MLH1 foci and RAD51 foci, synaptonemal complex (SC) length and DNA loop size in two related Bovidae species that share chromosome arm homology but show an extreme difference in their diploid chromosome number: cattle (Bos taurus, 2n = 60) and the common eland (Taurotragus oryx, 2nmale = 31). Compared to cattle, significantly fewer MLH1 foci per cell were observed in the common eland, which can be attributed to the lower number of initial double-strand breaks (DSBs) detected as RAD51 foci in leptonema. Despite the significantly shorter total autosomal SC length and longer DNA loop size of the common eland bi-armed chromosomes compared to those of bovine acrocentrics, the overall crossover density in the common eland was still lower than in cattle, probably due to the reduction in the number of MLH1 foci in the proximal regions of the bi-armed chromosomes. The formation of centric fusions during karyotype evolution of the common eland accompanied by meiotic chromatin compaction has greater implications in the reduction in the number of DSBs in leptonema than in the decrease of MLH1 foci number in pachynema. © 2015, Springer-Verlag Berlin Heidelberg. Source


Musilova P.,Central European Institute of Technology Veterinary Research Institute | Drbalova J.,Central European Institute of Technology Veterinary Research Institute | Kubickova S.,Central European Institute of Technology Veterinary Research Institute | Cernohorska H.,Central European Institute of Technology Veterinary Research Institute | And 2 more authors.
Chromosome Research | Year: 2014

T cell receptor (TCR) genes (TRA/TRD, TRB and TRG) reside in three regions on human chromosomes (14q11.2, 7q34 and 7p14, respectively) and pig chromosomes (7q15.3-q21, 18q11.3-q12 and 9q21-22, respectively). During the maturation of T cells, TCR genes are rearranged by site-specific recombination. Occasionally, interlocus recombination of different TCR genes takes place, resulting in chromosome rearrangements. It has been suggested that the absolute number of these “innocent” trans-rearrangements correlates with the risk of lymphoma. The aims of this work were to assess the frequencies of rearrangements with breakpoints in TCR genes in domestic pig lymphocytes and to compare these with the frequencies of corresponding rearrangements in human lymphocytes by using fluorescence in situ hybridization with chromosome painting probes. We show that frequencies of trans-rearrangements involving TRA/TRD locus in pigs are significantly higher than the frequency of translocations with breakpoints in TRB and TRG genes in pigs and the frequencies of corresponding trans-rearrangements involving TRA/TRD locus in humans. Complex structure of the pig TRA/TRD locus with high number of potential V(D)J rearrangements compared to the human locus may account for the observed differences. Furthermore, we demonstrated that trans-rearrangements involving pig TRA/TRD locus occur at lower frequencies in γδ T cells than in αβ T lymphocytes. The decrease of the frequencies in γδ T cells is probably caused by the absence of TRA recombination during maturation of this T cell lineage. High numbers of innocent trans-rearrangements in pigs may indicate a higher risk of T-cell lymphoma than in humans. © 2014, Springer Science+Business Media Dordrecht. Source

Discover hidden collaborations