Time filter

Source Type

To evaluate the association between inflammatory markers and relapse in GCA patients longitudinally assessed in a clinical trial of infliximab and glucocorticosteroids. Forty-four newly diagnosed GCA patients in glucocorticosteroid-induced remission were randomized to receive infliximab 5 mg/kg or placebo plus daily glucocorticosteroids, tapered using a standardized schedule. Sera were analysed for inflammatory markers at multiple, pre-defined time points. Temporal artery biopsies were performed in four patients before and after treatment to analyse changes in inflammatory and vascular remodelling marker expression. Thirteen of 44 patients relapsed. Similar proportions of relapsed patients were present in both treatment arms. ESR, CRP, intercellular adhesion molecule (ICAM)-1, TNF-α, and IL-12p40 were significantly elevated near relapse. In post-treatment biopsies, mRNA expression of pro-inflammatory cytokines decreased, while vascular remodelling factors increased relative to baseline biopsies. Tissue IL-12p40 and IFN-γ mRNA remained elevated in relapsing vs remitting patients. Despite prior findings of high concentrations of TNF-α in temporal artery biopsies of GCA patients, infliximab plus glucocorticosteroids did not result in improved clinical outcomes. Increased measures of this biomarker did not provide useful insight into the relative importance of TNF-α in the pathogenesis of GCA. Gene expression analysis in paired temporal artery biopsies pre- and post-treatment revealed decreased inflammatory activity and active vascular remodelling following treatment. In relapsing patients, increased expression of IFN-γ and IL-12p40 in post-treatment biopsies suggests a role in sustaining disease and setting the stage for relapse during treatment withdrawal. ClinicalTrials.gov; http://www.clinicaltrials.gov; NCT00076726.


Monoclonal antibody (mAb) therapy was first established upon the approval of a mouse antibody for treatment of human acute organ rejection. However, the high incidence of immune response against the mouse mAb restricted therapeutic utility. Development of chimeric, "humanized" and human mAbs broadened therapeutic application to immune-mediated diseases requiring long-term treatment. Indeed, mAb therapeutics targeting soluble cytokines are highly effective in numerous immune-mediated disorders. A recent example is ustekinumab, a first-in-class therapeutic human immunoglobulin G1 kappa mAb that binds to the interleukins (IL)-12 and IL-23, cytokines that modulate lymphocyte function, including T-helper (Th) 1 and Th17 cell subsets. Ustekinumab was generated via recombinant human IL-12 immunization of human immunoglobulin (hu-Ig) transgenic mice. Ustekinumab binds to the p40 subunit common to IL-12 and IL-23 and prevents their interaction with the IL-12 receptor β1 subunit of the IL-12 and IL-23 receptor complexes. Ustekinumab is approved for treatment of moderate-to-severe plaque psoriasis and has demonstrated efficacy in Crohn disease and psoriatic arthritis. The clinical characterization of ustekinumab continues to clarify our understanding of human immune pathologies and may offer a novel therapeutic option for certain immune-mediated diseases.


Patent
Centocor | Date: 2011-06-29

Methods for altering the cellular secretion rate of a protein, such as an antibody and the altered cells produced by the method are disclosed. The methods and altered cells are useful for producing high levels of proteins for therapeutic, diagnostic or research purposes.


A pharmaceutical composition is provided, the composition comprising a catalytically active peptide chain or a peptide chain comprising an antibody Fc or Fab fragment and from about 5 ml to about 20 ml of propylene glycol per 100 ml of the pharmaceutical composition. The diluent is an aqueous buffer at standard state and the propylene glycol is at standard state.


Patent
Centocor | Date: 2011-06-08

The present invention relates to at least one anti-TNF antibody, including isolated nucleic acids that encode at least one anti-TNF antibody, vectors, host cells, and methods of making and using thereof, including therapeutic compositions.


Patent
Centocor | Date: 2013-03-22

The present invention relates to potato virus NIa protease variants or fragments thereof, polynucleotides encoding them, and methods of making and using the foregoing.


The present invention is directed to methods to differentiate pluripotent stem cells. In particular, the present invention provides methods of characterization of cells differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage utilizing unique surface markers. The present invention also provides methods to enrich or sort cells expressing markers characteristic of the pancreatic endocrine lineage. The present invention also provides methods to deplete cells that may contaminate populations of cells expressing markers characteristic of the pancreatic endocrine lineage formed by the methods of the present invention, thereby reducing the incidence of tumor formation in vivo following transplantation.


Patent
Centocor | Date: 2011-05-11

The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce a population of cells expressing markers characteristic of the pancreatic endoderm lineage, wherein greater than 50% of the cells in the population co-express PDX1 and NKX6.1.


Patent
Centocor | Date: 2011-04-06

The present invention relates to at least one novel anti-IL-12 antibodies, including isolated nucleic acids that encode at least one anti-IL-12 antibody, IL-12, vectors, host cells, transgenic animals or plants, and methods of making and using thereof, including therapeutic compositions, methods and devices.


Patent
Centocor | Date: 2011-04-13

The present invention related to at least one novel chimeric, humanized or CDR-grafted anti-IL-6 antibodies derived from the murine CLB-8 antibody, including isolated nucleic acids that encode at least one such anti-IL-6 antibody, vectors, host cells, transgenic animals or plants, methods of making and using thereof, including therapeutic compositions, methods and devices.

Loading Centocor collaborators
Loading Centocor collaborators