Entity

Time filter

Source Type


To evaluate the association between inflammatory markers and relapse in GCA patients longitudinally assessed in a clinical trial of infliximab and glucocorticosteroids. Forty-four newly diagnosed GCA patients in glucocorticosteroid-induced remission were randomized to receive infliximab 5 mg/kg or placebo plus daily glucocorticosteroids, tapered using a standardized schedule. Sera were analysed for inflammatory markers at multiple, pre-defined time points. Temporal artery biopsies were performed in four patients before and after treatment to analyse changes in inflammatory and vascular remodelling marker expression. Thirteen of 44 patients relapsed. Similar proportions of relapsed patients were present in both treatment arms. ESR, CRP, intercellular adhesion molecule (ICAM)-1, TNF-α, and IL-12p40 were significantly elevated near relapse. In post-treatment biopsies, mRNA expression of pro-inflammatory cytokines decreased, while vascular remodelling factors increased relative to baseline biopsies. Tissue IL-12p40 and IFN-γ mRNA remained elevated in relapsing vs remitting patients. Despite prior findings of high concentrations of TNF-α in temporal artery biopsies of GCA patients, infliximab plus glucocorticosteroids did not result in improved clinical outcomes. Increased measures of this biomarker did not provide useful insight into the relative importance of TNF-α in the pathogenesis of GCA. Gene expression analysis in paired temporal artery biopsies pre- and post-treatment revealed decreased inflammatory activity and active vascular remodelling following treatment. In relapsing patients, increased expression of IFN-γ and IL-12p40 in post-treatment biopsies suggests a role in sustaining disease and setting the stage for relapse during treatment withdrawal. ClinicalTrials.gov; http://www.clinicaltrials.gov; NCT00076726.


Shao J.,University of Wisconsin - Madison | Yu X.,University of Wisconsin - Madison | Zhong B.,Centocor
Biometrika | Year: 2010

The covariate-adaptive randomization method was proposed for clinical trials long ago but little theoretical work has been done for statistical inference associated with it. Practitioners often apply test procedures available for simple randomization, which is controversial since procedures valid under simple randomization may not be valid under other randomization schemes. In this paper, we provide some theoretical results for testing hypotheses after covariate-adaptive randomization. We show that one way to obtain a valid test procedure is to use a correct model between outcomes and covariates, including those used in randomization. We also show that the simple two sample t-test, without using any covariate, is conservative under covariate-adaptive biased coin randomization in terms of its Type I error, and that a valid bootstrap t-test can be constructed. The powers of several tests are examined theoretically and empirically. Our study provides guidance for applications and sheds light on further research in this area. © 2010 Biometrika Trust.


Monoclonal antibody (mAb) therapy was first established upon the approval of a mouse antibody for treatment of human acute organ rejection. However, the high incidence of immune response against the mouse mAb restricted therapeutic utility. Development of chimeric, "humanized" and human mAbs broadened therapeutic application to immune-mediated diseases requiring long-term treatment. Indeed, mAb therapeutics targeting soluble cytokines are highly effective in numerous immune-mediated disorders. A recent example is ustekinumab, a first-in-class therapeutic human immunoglobulin G1 kappa mAb that binds to the interleukins (IL)-12 and IL-23, cytokines that modulate lymphocyte function, including T-helper (Th) 1 and Th17 cell subsets. Ustekinumab was generated via recombinant human IL-12 immunization of human immunoglobulin (hu-Ig) transgenic mice. Ustekinumab binds to the p40 subunit common to IL-12 and IL-23 and prevents their interaction with the IL-12 receptor β1 subunit of the IL-12 and IL-23 receptor complexes. Ustekinumab is approved for treatment of moderate-to-severe plaque psoriasis and has demonstrated efficacy in Crohn disease and psoriatic arthritis. The clinical characterization of ustekinumab continues to clarify our understanding of human immune pathologies and may offer a novel therapeutic option for certain immune-mediated diseases.


A set of anti-apoptotic genes were over-expressed, either singly or in combination, in an effort to develop robust Chinese Hamster Ovary host cell lines suitable for manufacturing biotherapeutics. High-throughput screening of caspase 3/7 activity enabled a rapid selection of transfectants with reduced caspase activity relative to the host cell line. Transfectants with reduced caspase 3/7 activity were then tested for improved integrated viable cell count (IVCC), a function of peak viable cell density and longevity. The maximal level of improvement in IVCC could be achieved by over-expression of either single anti-apoptotic genes, e.g., Bcl-2Δ (a mutated variant of Bcl-2) or Bcl-XL, or a combination of two or three anti-apoptotic genes, e.g., E1B-19K, Aven, and XIAPΔ. These cell lines yielded higher transient antibody production and a greater number of stable clones with high antibody yields. In a 5 L fed-batch bioreactor system, BΔ31-1, a stable clone expressing Bcl-2Δ, had a product titer that was 180% as compared to an optimal clone (Con-1) from the control cell line. Although lactate accumulated to more than 5 g/L in the control culture, its concentration was reduced in the anti-apoptotic BΔ31-1 cultures to below 1 g/L, confirming our earlier findings that cells over-expressing anti-apoptotic genes consume the lactate that would otherwise accumulate as a by-product in the culture medium. To the best of our knowledge, this is the first study to use the high throughput caspase screening method to identify CHO host cell lines with superior anti-apoptotic characteristics. © 2010 American Institute of Chemical Engineers


This paper describes a method for the fast identification and composition of disulfide-bonded peptides. A unique fragmentation signature of inter-disulfide-bonded peptides is detected using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry and high-energy collision-induced dissociation (CID). This fragmentation pattern identifies peptides with an interconnected disulfide bond and provides information regarding the composition of the peptides involved in the pairing. The distinctive signature produced using CID is a triplet of ions resulting from the cleavage of the disulfide bond to produce dehydroalanine, cysteine or thiocysteine product ions. This method is not applicable to intra-peptide disulfide bonds, as the cleavage mechanism is not the same and a triplet pattern is not observed. This method has been successfully applied to identifying disulfide-bonded peptides in a number of control digestions, as well as study samples where disulfide bond networks were postulated and/or unknown. Copyright © 2011 John Wiley & Sons, Ltd.

Discover hidden collaborations