Centera Photonics Inc.

Taiwan

Centera Photonics Inc.

Taiwan

Time filter

Source Type

A method for manufacturing an optical electrical module includes steps as follow. Forming first patterns on a first substrate by a first mask, wherein an angle between a primary flat of the first substrate and an arrangement direction having a maximum number of first pattern units of the first mask is (+90*n), wherein is between 22 to 39, and n is an integer. Subjecting the first substrate to a first patterning process using the first patterns as a mask to form accommodating grooves and a reflective groove connected with the accommodating grooves in the first substrate, wherein an extension direction of each of the accommodating grooves is perpendicular to an extension direction of the reflective groove.


Patent
Centera Photonics Inc. | Date: 2015-05-20

A detachable package structure that includes an assembly substrate, a first semiconductor substrate, a second semiconductor substrate, and a combination element is provided. The first semiconductor substrate is disposed on the assembly substrate and has a first alignment portion. The second semiconductor substrate has a second alignment portion. The combination element allows the first semiconductor substrate and the second semiconductor substrate to be detachably combined together, such that the first alignment portion and the second alignment portion are aligned and combined.


Patent
Centera Photonics Inc. | Date: 2012-12-20

A photoelectric device package and a detachable package structure are provided. The photoelectric device package includes a bottom-plate, a top-plate, at least one photoelectric device, and at least one light-guiding element. The bottom-plate has a first carrying part and a first substrate part on the first carrying part. The first carrying part has first alignment portions. The first substrate part has second alignment portions. The top-plate has a second carrying part and a second substrate part on the second carrying part. The second carrying part has third alignment portions. The second substrate part has fourth alignment portions. The top-plate and the bottom-plate are assembled by the first and third alignment portions. The first and second substrate parts are positioned by the second and fourth alignment portions. Each photoelectric device is disposed on the first substrate part. Each light-guiding element is disposed between the first and second substrate parts.


Patent
Centera Photonics Inc. | Date: 2012-05-15

A wafer-level process for fabricating a plurality of photoelectric modules is provided. The wafer-level process includes at least following procedures. Firstly, a wafer including a plurality of chips arranged in an array is provided. Next, a plurality of photoelectric devices are mounted on the chips. Next, a cover plate including a plurality of covering units arranged in an array is provided. Next, a plurality of light guiding mediums are formed over the cover plate. Next, the cover plate is bonded with the wafer by an adhesive, wherein each of the covering units covers and bonds with one of the chips, and the light guiding mediums are sandwiched between the cover plate and the wafer. Then, the wafer and the cover plate are diced to obtain the plurality of photoelectric modules.


An optical electrical module includes a first substrate, a second substrate, a bearing portion and at least one optical electrical element. The second substrate is combined with the first substrate and has a reflective surface facing the first substrate. The bearing portion is disposed between the first substrate and the second substrate to limit at least one light guide element. The optical electrical element is disposed on a surface of the first substrate facing the reflective surface and faces the reflective surface. The optical electrical element is configured for providing or receiving light signals. The reflective surface and the light guide element are disposed on an optical path of the light signals.


Patent
Centera Photonics Inc. | Date: 2016-05-24

An optical connection module includes a substrate, an arrayed wavelength grating structure, an optical detector, and an oblique surface. The arrayed wavelength grating structure is disposed on the substrate and the arrayed wavelength grating structure is configured to transmit a light. The optical detector is disposed on the substrate, and the optical detector is configured to detect the light propagating through the arrayed wavelength grating structure. The oblique surface is configured to redirect the light from the arrayed wavelength grating structure to the optical detector.


Patent
Centera Photonics Inc. | Date: 2015-04-28

The present invention provides an optoelectronic module including a substrate, an optoelectronic device and a control unit. The substrate includes a top surface, a bottom surface, a concave structure, a through hole structure and a conductive material. The concave structure is disposed on the top surface. The through hole structure passes through the substrate from the top surface to the bottom surface. The conductive material is filled into the through hole structure. The optoelectronic device is disposed on the substrate for providing or receiving an optical signal. The control unit is configured on the top surface and electrically connected to the conductive material and the optoelectronic device for controlling the optoelectronic device.


An optoelectronic transmitter including a semiconductor substrate, at least one laser source, and a high numerical aperture (NA) waveguide is provided. The laser source is disposed on the semiconductor substrate and configured to emit at least one laser beam. The high numerical aperture (NA) waveguide has an NA greater than or equal to 0.5 and is disposed on the semiconductor substrate. At least a part of the laser beam from the laser source enters the high NA waveguide, wherein no lens is disposed on the light path of the laser beam between the laser source and the high NA waveguide. An optoelectronic receiver and an optoelectronic transceiver are also provided.


Patent
Centera Photonics Inc. | Date: 2012-03-18

An optical electrical module includes a first substrate, a second substrate, a bearing portion and at least one optical electrical element. The second substrate is combined with the first substrate and has a reflective surface facing to the first substrate. The bearing portion is disposed between the first substrate and the second substrate to limit at least one light guide element. The optical electrical element is disposed on a surface of the first substrate facing to the reflective surface and faces to the reflective surface. The optical electrical element is configured for providing or receiving light signals. The reflective surface and the light guide element are disposed on an optical path of the light signals.


Patent
Centera Photonics Inc. | Date: 2012-03-22

The present invention provides an optoelectronic module including a substrate, an optoelectronic device and a control unit. The substrate includes a top surface, a bottom surface, a concave structure, a through hole structure and a conductive material. The concave structure is disposed on the top surface. The through hole structure passes through the substrate from the top surface to the bottom surface. The conductive material is filled into the through hole structure. The optoelectronic device is disposed on the substrate for providing or receiving an optical signal. The control unit is configured on the top surface and electrically connected to the conductive material and the optoelectronic device for controlling the optoelectronic device.

Loading Centera Photonics Inc. collaborators
Loading Centera Photonics Inc. collaborators