Center Val Bio

Ranomafana, Madagascar

Center Val Bio

Ranomafana, Madagascar
SEARCH FILTERS
Time filter
Source Type

Wright P.C.,State University of New York at Stony Brook | Wright P.C.,Center Val Bio | Tecot S.R.,State University of New York at Stony Brook | Tecot S.R.,Center Val Bio | And 8 more authors.
American Journal of Primatology | Year: 2011

Although some conservationists accept that not all species can be saved, we illustrate the difficulty in deciding which species are dispensable. In this article, we examine the possibility that the integrity of a forest relies on its entire faunal assemblage. In Madagascar, one faunal group, the lemurs, accounts for the greatest biomass and species richness among frugivores. For example, 7 of the 13 sympatric lemur species in Madagascar's eastern rainforests consume primarily fruit. Because of this, we suggest that some tree species may rely heavily on particular lemur taxa for both seed dispersal and germination. In Ranomafana National Park, the diets for four of the day-active lemur frugivores have been documented during annual cycles over a 5-year period. We predicted that, although the fruit of some plant taxa would be exploited by multiple lemur species, the fruit of others would be eaten by one lemur species alone. Analyses reveal that while lemurs overlap in a number of fruit taxa exploited, 46% (16/35) of families and 56% (29/52) of genera are eaten exclusively by one lemur species. We, therefore, predict local changes in forest composition and structure if certain of these lemur species are eliminated from a forest owing to hunting, disease, or habitat disturbance. We also suggest that this result may be of global significance because carbon sequestration by the tropical forests in Madagascar may be reduced as a result of this predicted change in forest composition. © 2011 Wiley-Liss, Inc.


Zohdy S.,University of Helsinki | Zohdy S.,Center Val Bio | Kemp A.D.,University of Helsinki | Kemp A.D.,Center Val Bio | And 6 more authors.
BMC Ecology | Year: 2012

Background: Studies of host-parasite interactions have the potential to provide insights into the ecology of both organisms involved. We monitored the movement of sucking lice (Lemurpediculus verruculosus), parasites that require direct host-host contact to be transferred, in their host population of wild mouse lemurs (Microcebus rufus). These lemurs live in the rainforests of Madagascar, are small (40 g), arboreal, nocturnal, solitary foraging primates for which data on population-wide interactions are difficult to obtain. We developed a simple, cost effective method exploiting the intimate relationship between louse and lemur, whereby individual lice were marked, without removal from their host, with an individualized code, and tracked throughout the lemur population. We then tested the hypotheses that 1) the frequency of louse transfers, and thus interactions, would decrease with increasing distance between paired individual lemurs; 2) due to host polygynandry, social interactions and hence louse transfers would increase during the onset of the breeding season; and 3) individual mouse lemurs would vary in their contributions to the spread of lice.Results: We show that louse transfers involved 43.75% of the studied lemur population, exclusively males. Louse transfers peaked during the breeding season, perhaps due to increased social interactions between lemurs. Although trap-based individual lemur ranging patterns are restricted, louse transfer rate does not correlate with the distance between lemur trapping locales, indicating wider host ranging behavior and a greater risk of rapid population-wide pathogen transmission than predicted by standard trapping data alone. Furthermore, relatively few lemur individuals contributed disproportionately to the rapid spread of lice throughout the population.Conclusions: Using a simple method, we were able to visualize exchanges of lice in a population of cryptic wild primates. This method not only provided insight into the previously unseen parasite movement between lemurs, but also allowed us to infer social interactions between them. As lice are known pathogen vectors, our method also allowed us to identify the lemurs most likely to facilitate louse-mediated epidemics. Our approach demonstrates the potential to uncover otherwise inaccessible parasite-host, and host social interaction data in any trappable species parasitized by sucking lice. © 2012 Zohdy et al; licensee BioMed Central Ltd.

Loading Center Val Bio collaborators
Loading Center Val Bio collaborators