Time filter

Source Type

Pazos E.,Northwestern University | Pazos E.,Center Tecnologic Of La Quimica Of Catalonia | Sleep E.,Northwestern University | Perez C.M.R.,Northwestern University | And 4 more authors.
Journal of the American Chemical Society

Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content. © 2016 American Chemical Society. Source

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP.2012.2.1-2 | Award Amount: 4.71M | Year: 2012

The Eco2CO2 project aims at exploiting a photo-electro-chemical (PEC) CO2 conversion route for the synthesis of methanol as a key intermediate for the production of fine chemicals (fragrances, flavourings, adhesives, monomers,) in a lignocellulosic biorefinery. A distinct improvement in the ecological footprint of the envisaged chemical industries will thus be achieved by: i) boosting the potential of lignocellulosic biorefineries by exploiting secondary by-products such as furfurals or lignin; ii) providing a small but non-negligible contribution to the reduction of CO2 release into the atmosphere by exploitation of sunlight as an energy source. The most crucial development in the project will be the development of a PEC reactor capable of converting CO2 into methanol by exploiting water and sun light with a targeted conversion efficiency exceeding 6%, with reference to wavelengths above 400 nm, and an expected durability of 10.000 h. The above specifications must be reached without using expensive noble metals or precious materials which should enable costs of the PEC panels lower than 60 Euro/m2 including the installation. Catalytic reactions of methanol and furfural to produce perfuming agents via partial oxidation or methylation, as well as of lignin or lignin depolymerisation derivatives to produce adhesives or monomers (e.g. p-xylene) will undergo a R&D programme to achieve cost effective production of green fine chemicals, proven by the end of the project via lab bench tests of at least 100 g/h production rates. Based on early calculations, if successful, the Eco2CO2 technologies should be capable of inducing avoided CO2 emissions by the year 2020 as high as 50 Mtons/year worldwide.

Tsibranska I.H.,University of Chemical Technology and Metallurgy of Sofia | Tylkowski B.,University of Chemical Technology and Metallurgy of Sofia | Tylkowski B.,Rovira i Virgili University | Tylkowski B.,Center Tecnologic Of La Quimica Of Catalonia
Food and Bioproducts Processing

The present investigation considers the flux decline during concentration of ethanolic extracts from Sideritis ssp. L. by nanofiltration. Membranes Duramem with molecular weight cut-off (MWCO) 300 and 500 Da have been used. Two sets of nanofiltration experiments are performed: dead end filtration in a stirred cell and cross flow filtration in a 4 flat sheet membrane rig. Comparable fluxes and rejections are observed. The membrane behaviour with respect to the operation conditions: transmembrane pressure and feed concentration is studied. The effect of the latter is illustrated by experiments with different feed concentrations and permeate-to-feed ratios. The discussion is supported by rejections and mass balance calculations. In both modes flux decreased with concentration and the observed rejections remained constant. Better conditions for reduced flux decline and tendency to a steady value are obtained by cross-flow nanofiltration. Combined with the greater membrane area and feed volume used in these experiments, these results can be regarded as having potential for larger scale applications. © 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. Source

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SPIRE-05-2015 | Award Amount: 4.42M | Year: 2015

TERRA project aims to develop, from TRL 3 to 5, a tandem electrocatalytic reactor (TER) coupling an oxidation reaction to a reduction reaction, with thus the great potential advantage of i) saving resources and energy (needed to produce the oxidant and reductants for the two separate reactions), and ii) intensify the process (reduce the nr. of steps, coupling two synthesis processes and especially eliminating those to prepare the oxidation and reduction agents). The proposal address one of SPIRE Roadmap Key Actions New ways of targeting energy input via electrochemical. The TER unit may be used in a large field of applications, but will be developed for a specific relevant case: the synthesis of PEF (PolyEthylene Furanoate), a next generation plastic. TERRA project aims to make a step forward in this process by coupling the FDCA and MEG synthesis in a single novel TER reactor, with relevant process intensification. Between the elements of innovation of the approach are: i) operation at higher T,P than conventional electrochemical devices for chemical manufacturing, ii) use of noble-metal-free electrocatalysts, iii) use of novel 3D-type electrodes to increase productivity, iv) use of electrode with modulation of activity, v) possibility to utilize external bias (from unused electrical renewable energy) to enhance flexibility of operations. In addition to scale-up reactor and test under environmental relevant conditions (TRL 5), the approach in TERRA project is to address the critical elements to pass from lab-scale experimentation to industrial prototype with intensified productivity. These developments are critical for a wider use of electrochemical manufacturing in chemical and process industries.

Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-EID | Phase: MSCA-ITN-2015-EID | Award Amount: 1.25M | Year: 2016

SMARTMEM is a multidisciplinary project leveraging the emerging technology platforms around so-called smart membranes and evolving this platform to commercial use in consumer good products. The objective of this project is the training of 5 PhD students in various scientific fields around membrane technology, involving disciplines from advanced materials synthesis, to membrane production, linking product application and product performance driving new consumer value. The training will be setup in a multi sector way for the students to learn the technical depth of the disciplines as well as the innovation cycle from idea to market application and commercialisation. The objective of the project will be achieved through finding applicability in established markets like textiles with functional benefits, air care devices with health benefits and innovate beyond like develop improved microcapsules which release on demand and improved single dose detergent products, among others. Therefore, SMARTMEM will contribute to accomplish the goals of Europe 2020 strategy through: - training of highly skilful scientists in emerging fields such as stimuli-responsive materials - placing Europe at the vanguard of innovation in sustainable consumer goods by smart controlled release

Discover hidden collaborations