Time filter

Source Type

Toulouse, France

Choumessi A.T.,University of Yaounde I | Danel M.,Toulouse 1 University Capitole | Danel M.,French National Center for Scientific Research | Chassaing S.,Toulouse 1 University Capitole | And 12 more authors.
Cell Division

Background: Xylopia aethiopica, a plant found throughout West Africa, has both nutritional and medicinal uses. The present study aims to characterize the effects of extracts of this plant on cancer cells.Results: We report that X. aethiopica extract prepared with 70% ethanol has antiproliferative activity against a panel of cancer cell lines. The IC50 was estimated at 12 μg/ml against HCT116 colon cancer cells, 7.5 μg/ml and > 25 μg/ml against U937 and KG1a leukemia cells, respectively. Upon fractionation of the extract by HPLC, the active fraction induced DNA damage, cell cycle arrest in G1 phase and apoptotic cell death. By using NMR and mass spectrometry, we determined the structure of the active natural product in the HPLC fraction as ent-15-oxokaur-16-en-19-oic acid.Conclusion: The main cytotoxic and DNA-damaging compound in ethanolic extracts of Xylopia aethiopica is ent-15-oxokaur-16-en-19-oic acid. © 2012 Choumessi et al; licensee BioMed Central Ltd. Source

Beduer A.,CNRS Laboratory for Analysis and Architecture of Systems | Beduer A.,Toulouse 1 University Capitole | Beduer A.,Center Pierre Potier | Seichepine F.,CNRS Laboratory for Analysis and Architecture of Systems | And 10 more authors.

Carbon nanotubes (CNTs) promise various novel neural biomedical applications for interfacing neurons with electronic devices or to design appropriate biomaterials for tissue regeneration. In this study, we use a new methodology to pattern SiO2 cell culture surfaces with double-walled carbon nanotubes (DWNTs). In contrast to homogeneous surfaces, patterned surfaces allow us to investigate new phenomena about the interactions between neural cells and CNTs. Our results demonstrate that thin layers of DWNTs can serve as effective substrates for neural cell culture. Growing neurons sense the physical and chemical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. Cells exhibit comparable adhesion and differentiation scores on homogeneous CNT layers and on a homogeneous control SiO2 surface. Conversely, on patterned surfaces, it is found that cells preferentially grow on CNT patterns and that neurites are guided by micrometric CNT patterns. To further elucidate this observation, we investigate the interactions between CNTs and proteins that are contained in the cell culture medium by using quartz crystal microbalance measurements. Finally, we show that protein adsorption is enhanced on CNT features and that this effect is thickness dependent. CNTs seem to act as a sponge for culture medium elements, possibly explaining the selectivity in cell growth localization and differentiation. © 2012 American Chemical Society. Source

Beduer A.,CNRS Laboratory for Analysis and Architecture of Systems | Beduer A.,ISAE University | Beduer A.,Center Pierre Potier | Seichepine F.,CNRS Laboratory for Analysis and Architecture of Systems | And 7 more authors.
Microelectronic Engineering

We present an optimized process for generating at low cost, patterns of carbon nanotubes (CNTs) on a large variety of substrates through a simple micro contact printing method. This method meets the requirements for the integration of CNTs into microdevices, for applications in microelectronics (interconnects), flexible electronics (printed conductive electrodes) and biodevices (biosensors and biosystems for regenerative medicine). We have optimized a new method for inking PolyDiMethylSiloxane (PDMS) stamps with CNTs that turned out to improve significantly the quality of the printed features over large surfaces. This inking step is performed by adapting a spray-coating process leading to a dense and homogeneous coating of the stamp with a thin layer of CNTs. The printing step is performed using a solvent mediation, allowing us to pattern this thin layer of CNTs onto various substrates by contact through a thin film of liquid. We demonstrate that this soft and rapid methodology can lead to the realization of CNTs patterns with versatile geometries onto various substrates at the micron scale. Examples of applications for CNTs interconnects and flexible electronics are rapidly shown. © 2012 Elsevier B.V. All rights reserved. Source

Boutros R.,University of Queensland | Boutros R.,Childrens Medical Research Institute | Mondesert O.,Center Pierre Potier | Lorenzo C.,Center Pierre Potier | And 8 more authors.

CDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells. Conversely, CDC25B depletion causes a loss of centrin 2 from the centrosome, which can be rescued by treatment with the proteasome inhibitor MG132. CDC25B overexpression also promotes the formation of excess centrin 2 "foci". These foci can accumulate other centrosome proteins, including γ-tubulin and PCM-1, and can function as microtubule organising centres, indicating that these represent functional centrosomes. Formation of centrin 2 foci can be blocked by specific inhibition of CDK2 but not CDK1. CDK2-mediated phosphorylation of Monopolar spindle 1 (Mps1) at the G1/S transition is essential for the initiation of centrosome duplication, and Mps1 is reported to phosphorylate centrin 2. Overexpression of wild-type or non-degradable Mps1 exacerbated the formation of excess centrin 2 foci induced by CDC25B overexpression, while kinase-dead Mps1 has a protective effect. Together, our data suggest that CDC25B, through activation of a centrosomal pool of CDK2, stabilises the local pool of Mps1 which in turn regulates the level of centrin 2 at the centrosome. Overexpression of CDC25B may therefore contribute to tumourigenesis by perturbing the natural turnover of centrosome proteins such as Mps1 and centrin 2, thus resulting in the de novo assembly of extra-numerary centrosomes and potentiating chromosome instability. © 2013 Boutros et al. Source

Beduer A.,CNRS Laboratory for Analysis and Architecture of Systems | Beduer A.,National Polytechnic Institute of Toulouse | Beduer A.,Center Pierre Potier | Vaysse L.,French Institute of Health and Medical Research | And 11 more authors.
Microelectronic Engineering

In this paper we investigate the role of micropatterning and molecular coating for cell culture and differentiation of neuronal cells (Neuro2a cell line) on a polydimethylsiloxane substrate. We investigate arrays of micrometric grooves (line and space) capable to guide neurite along their axis. We demonstrate that pattern dimensions play a major role due to the deformation of the cell occasioned by grooves narrower than typical cell dimension. A technological compromise for optimizing cell density, differentiation rate and neurite alignment has been obtained for 20 μm wide grooves which is a dimension comparable with the average cell dimension. This topographical engineered pattern combined with double-wall carbon nanotubes coating enabled us to obtain adherent cell densities in the order of 104 cells/cm 2 and a differentiation rate close to 100%. © 2011 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations