Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne

Gières, France

Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne

Gières, France
SEARCH FILTERS
Time filter
Source Type

Kourkgy C.,Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne | Garel M.,Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne | Appolinaire J.,Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne | Loison A.,CNRS Alpine Ecology Laboratory | Toigo C.,Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne
Journal of Animal Ecology | Year: 2016

In seasonal environments, birth dates are a central component for a species' life history, with potential long-term fitness consequences. Yet our understanding of selective pressures of environmental changes on birth dates is limited in wild mammals due to the difficulty of data collection. In a context of rapid climate change, the question of a possible mismatch between plant phenology and birth phenology also remains unanswered for most species. We assessed whether and how the timing of birth in a mountain mammal (isard, also named Pyrenean chamois, Rupicapra pyrenaica pyrenaica) tracked changes in plant growing season, accounting for maternal traits, individual heterogeneity and population density. We not only focused on spring conditions but also assessed to what extent onset of autumn can be a driver of phenological biological events and compared the magnitude of the response to the magnitude of the environmental changes. We relied on a 22-year study based on intensively monitored marked individuals of known age. Births were highly synchronized (80% of kids born within 25 days) and highly repeatable (84%; between-female variation of 9·6 days, within-female variation of 4·2 days). Individual phenotypic plasticity allows females to respond rapidly to interannual changes in plant phenology but did not prevent the existence of a mismatch: a 10-day advance in the autumn or spring plant phenology led to 3·9 and 1·3 days advance in birth dates, respectively. Our findings suggest that plant phenology may act as a cue to induce important stages of the reproductive cycle (e.g. conception and gestation length), subsequently affecting parturition dates, and stressed the importance of focusing on long-term changes during spring for which females may show much lower adaptive potential than during autumn. These results also question the extent to which individual plasticity along with high heterogeneity among individuals will allow species to cope with demographic consequences of climate changes. © 2016 British Ecological Society.


PubMed | CNRS Alpine Ecology Laboratory and Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne
Type: Journal Article | Journal: The Journal of animal ecology | Year: 2016

In seasonal environments, birth dates are a central component for a species life history, with potential long-term fitness consequences. Yet our understanding of selective pressures of environmental changes on birth dates is limited in wild mammals due to the difficulty of data collection. In a context of rapid climate change, the question of a possible mismatch between plant phenology and birth phenology also remains unanswered for most species. We assessed whether and how the timing of birth in a mountain mammal (isard, also named Pyrenean chamois, Rupicapra pyrenaica pyrenaica) tracked changes in plant growing season, accounting for maternal traits, individual heterogeneity and population density. We not only focused on spring conditions but also assessed to what extent onset of autumn can be a driver of phenological biological events and compared the magnitude of the response to the magnitude of the environmental changes. We relied on a 22-year study based on intensively monitored marked individuals of known age. Births were highly synchronized (80% of kids born within 25 days) and highly repeatable (84%; between-female variation of 9.6 days, within-female variation of 4.2 days). Individual phenotypic plasticity allows females to respond rapidly to interannual changes in plant phenology but did not prevent the existence of a mismatch: a 10-day advance in the autumn or spring plant phenology led to 3.9 and 1.3 days advance in birth dates, respectively. Our findings suggest that plant phenology may act as a cue to induce important stages of the reproductive cycle (e.g. conception and gestation length), subsequently affecting parturition dates, and stressed the importance of focusing on long-term changes during spring for which females may show much lower adaptive potential than during autumn. These results also question the extent to which individual plasticity along with high heterogeneity among individuals will allow species to cope with demographic consequences of climate changes.


Benoist S.,Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne | Garel M.,Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne | Cugnasse J.-M.,Office National de la Chasse et de la Faune Sauvage | Blanchard P.,CNRS Biological Evolution and Diversity Laboratory
PLoS ONE | Year: 2013

In prey species, vigilance is an important part of the decision making process related to predation risk effects. Therefore, understanding the mechanisms shaping vigilance behavior provides relevant insights on factors influencing individual fitness. We investigated the role of extrinsic and intrinsic factors on vigilance behavior in Mediterranean mouflon (Ovis gmelini musimon6Ovis sp.) in a study site spatially and temporally contrasted in human pressures. Both sexes were less vigilant in the wildlife reserve compared to surrounding unprotected areas, except for males during the hunting period. During this period, males tended to be less strictly restricted to the reserve than females what might lead to a pervasive effect of hunting within the protected area, resulting in an increase in male vigilance. It might also be a rutting effect that did not occur in unprotected areas because males vigilance was already maximal in response to human disturbances. In both sexes, yearlings were less vigilant than adults, probably because they traded off vigilance for learning and energy acquisition and/or because they relied on adult experience present in the group. Similarly, non-reproductive females benefited of the vigilance effort provided by reproductive females when belonging to the same group. However, in the absence of reproductive females, non-reproductive females were as vigilant as reproductive females. Increasing group size was only found to reduce vigilance in females (up to 17.5%), not in males. We also showed sex-specific responses to habitat characteristics. Females increased their vigilance when habitat visibility decreased (up to 13.8%) whereas males increased their vigilance when feeding on low quality sites, i.e., when concomitant increase in chewing time can be devoted to vigilance with limited costs. Our global approach was able to disentangle the sex-specific sources of variation in mouflon vigilance and stressed the importance of reserves in managing and conserving wild sheep populations. © 2013 Benoist et al.


PubMed | Office National de la Chasse et de la Faune Sauvage, Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne and CNRS Biological Evolution and Diversity Laboratory
Type: Journal Article | Journal: PloS one | Year: 2014

In prey species, vigilance is an important part of the decision making process related to predation risk effects. Therefore, understanding the mechanisms shaping vigilance behavior provides relevant insights on factors influencing individual fitness. We investigated the role of extrinsic and intrinsic factors on vigilance behavior in Mediterranean mouflon (Ovis gmelini musimonOvis sp.) in a study site spatially and temporally contrasted in human pressures. Both sexes were less vigilant in the wildlife reserve compared to surrounding unprotected areas, except for males during the hunting period. During this period, males tended to be less strictly restricted to the reserve than females what might lead to a pervasive effect of hunting within the protected area, resulting in an increase in male vigilance. It might also be a rutting effect that did not occur in unprotected areas because males vigilance was already maximal in response to human disturbances. In both sexes, yearlings were less vigilant than adults, probably because they traded off vigilance for learning and energy acquisition and/or because they relied on adult experience present in the group. Similarly, non-reproductive females benefited of the vigilance effort provided by reproductive females when belonging to the same group. However, in the absence of reproductive females, non-reproductive females were as vigilant as reproductive females. Increasing group size was only found to reduce vigilance in females (up to 17.5%), not in males. We also showed sex-specific responses to habitat characteristics. Females increased their vigilance when habitat visibility decreased (up to 13.8%) whereas males increased their vigilance when feeding on low quality sites, i.e., when concomitant increase in chewing time can be devoted to vigilance with limited costs. Our global approach was able to disentangle the sex-specific sources of variation in mouflon vigilance and stressed the importance of reserves in managing and conserving wild sheep populations.

Loading Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne collaborators
Loading Center National Detudes Et Of Recherche Appliquee Sur La Faune Of Montagne collaborators