Center Minier Of Khouribga

Khouribga, Morocco

Center Minier Of Khouribga

Khouribga, Morocco
SEARCH FILTERS
Time filter
Source Type

Bardet N.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Jalil N.-E.,Cadi Ayyad University | de Lapparent de Broin F.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Germain D.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | And 2 more authors.
PLoS ONE | Year: 2013

Background:Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles.Principal Findings:A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles.Conclusion/Significance:The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further supports the hypothesis that marine life was, at least locally, very diversified just prior to the Cretaceous/Palaeogene (K/Pg) biotic crisis. © 2013 Bardet et al.


Bardet N.,French Natural History Museum | Houssaye A.,CNRS Mechanical Adaptation and Evolution | Vincent P.,French Natural History Museum | Pereda Suberbiola X.,University of the Basque Country | And 3 more authors.
Gondwana Research | Year: 2015

Mosasaurid squamates are the most numerically abundant, and taxonomically/ecologically diverse clade of marine amniotes represented in the Maastrichtian Phosphates of Morocco. With few exceptions, they are faunally typical of the Southern Mediterranean Tethys Margin (around palaeolatitude 25°N) and range from the base to the top of the stage. The Moroccan assemblages include at least 7 genera and 10 species representing a broad spectrum of sizes and morphologies that illustrate several ecological trends. Noteworthy is the predominance of Mosasaurinae which are widespread in contemporaneous outcrops worldwide and constitute 80% and 70% of the total genus/species number respectively. In contrast, Halisauromorpha and Russellosaurina (plioplatecarpines) are scarce and tylosaurines are presently unknown. All of the Moroccan mosasaurids exhibit characteristic tooth morphologies and can be placed into resource partitioning morphoguilds indicative of adaptations for piercing, crushing or cutting. Medium to large predators are found to distribute along the 'Crush'-'Cut' axis of the morphoguild projection, and a new 'Crush-Cut' guild, previously unrecognised amongst Mesozoic marine amniotes, accommodates several Prognathodon species. Also of importance is the lack of mosasaurids along the 'Pierce'-'Crush' axis, potentially inferring that these ecological niches were occupied by other marine vertebrates such as selachians and plesiosaurians. In addition, the relative abundance of mosasaurids throughout the Maastrichtian series of the Gantour Basin evidences direct ecological competition or predation phenomena. © 2014 International Association for Gondwana Research.


Vincent P.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Bardet N.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Pereda Suberbiola X.,University of the Basque Country | Bouya B.,Center Minier Of Khouribga | And 2 more authors.
Gondwana Research | Year: 2011

Though the Maastrichtian Phosphates of Morocco have yielded very rich marine vertebrate assemblages, plesiosaurs remain very scarce in these strata. The only hitherto recognized taxon was Plesiosaurus mauritanicus Arambourg, 1952, regarded here as a nomem dubium. Here we describe a new genus and species of elasmosaurid plesiosaur, Zarafasaura oceanis, which represents the first valid elasmosaurid plesiosaur described from the latest Cretaceous of Africa, and the second one from this continent. A phylogenetic analysis of plesiosauroids indicates that Zarafasaura oceanis has close affinities with elasmosaurids from the Late Cretaceous of North America and Japan. Among its distinctive suite of characters, the general shape and organisation of its squamosal and palate are unique among elasmosaurids. This new taxon completes our understanding of Late Cretaceous plesiosaur palaeobiodiversity and palaeobiogeography, and shows that Maastrichtian plesiosaurs were characterized by a quite high degree of endemism. They were also highly diversified and distributed worldwide, which supports the hypothesis of a catastrophic extinction of plesiosaurs at the K/T boundary. © 2010 International Association for Gondwana Research.


Houssaye A.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Bardet N.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Rage J.-C.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Suberbiola X.P.,University of the Basque Country | And 3 more authors.
Geological Magazine | Year: 2011

The discovery of new specimens of Pachyvaranus crassispondylus Arambourg, 1952 from the Maastrichtian phosphates of Morocco and Syria enables us to (1) redescribe in detail this poorly known varanoid lizard, (2) provide a more detailed diagnosis and (3) re-evaluate the systematic affinities of this taxon within squamates. The latter is placed in Pachyvaranidae nov., considered a new unranked clade of non-pythonomorph Varanoidea. The intense pachyosteosclerosis observed in the vertebrae and ribs suggests a primarily aquatic mode of life for Pachyvaranus. This is in accordance with the sedimentological context (shallow marine environment). As for its palaeobiogeographical distribution, Pachyvaranus is a component of the marine reptile assemblages from the southern margin of the Mediterranean Tethys, around palaeolatitudes 20° N. The osteoderms previously referred to this taxon by Arambourg are reanalysed and assigned to a teleost fish. © Cambridge University Press 2010.


Yans J.,University of Namur | Amaghzaz M.,Center Minier Of Khouribga | Bouya B.,Center Minier Of Khouribga | Cappetta H.,Montpellier University | And 7 more authors.
Gondwana Research | Year: 2014

The well-known Maastrichtian-Ypresian vertebrate-bearing phosphate series, in the Ouled Abdoun Basin, Morocco, is classically dated using regional selachian biostratigraphic zonation. These marine sediments yielded Paleocene and Eocene mammals comprising the earliest known placentals from Africa. This study provides the first insight into the organic carbon isotope chemostratigraphy (δ13Corg) of the Moroccan phosphate series and a refined dating of its vertebrate-bearing levels. Four Paleocene-Eocene sections in the NE Ouled Abdoun quarries show consistent δ13Corg long term evolutions, from the base to the top: 1) positive trend in phosphorite Bed IIa, beginning with the lower Bone Bed yielding mammals such as Eritherium, Ocepeia, Abdounodus, Lahimia, of early Thanetian and Selandian age; 2) transitional negative trend in the Intercalary phosphorite Beds II/I that includes the Otodus obliquus and Phosphatherium escuilliei Bone Bed of earliest Ypresian age; 3) negative trend to the lowermost δ13Corg values that are correlative to the early-middle Ypresian interval including ETM 2 and ETM 3 hyperthermal events in the global record; 4) positive trend in chert-enriched facies containing the middle Ypresian EECO global climatic event. Our chemostratigraphic study of the Ouled Abdoun phosphate series provides a new chronostratigraphic framework for calibrating the beginning of the evolution of placental mammals in Africa. The lower Bone Bed level from the Paleocene phosphorite Bed IIa yielding Eritherium is not younger than early Thanetian, and is most likely Selandian. The Phosphatherium Bone Bed in the Intercalary Beds II/I is earliest Ypresian. The phosphorite Bed 0, from which Daouitherium probably came, is early-middle Ypresian, just below the EECO. This suggests that the first large proboscideans evolved after the PETM, during mid-Ypresian warming events. The δ13Corg study does not support the presence of Lutetian in the NE Ouled Abdoun phosphate series and suggests that a noticeable part of the upper Thanetian is absent. © 2013 International Association for Gondwana Research.


De Lapparent de Broin F.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Bardet N.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Amaghzaz M.,Center Minier Of Khouribga | Meslouh S.,MEMEE
Comptes Rendus - Palevol | Year: 2014

A new genus and species of huge marine turtle (superfamily Chelonioidea, epifamily Dermochelyoidae) is described from the Maastrichtian Phosphates of the Oulad Abdoun Basin of Morocco. A new type of feeding apparatus, adapted for a powerful crushing pattern, illustrates the noteworthy diversity of fossil vertebrates of the Maastrichtian-Ypresian Phosphates of Morocco. No other crushing cryptodire or bothremydid pleurodire has this morphology. During the Maastrichtian, the known crushing pattern of chelonioids was different, close to that of modern cheloniids, as illustrated in Morocco in the Maastrichtian Ganntour Basin and the Palaeogene Oulad Abdoun Basin. This new taxon exhibits unusual cranial characters (fusion of premaxillae associated with a backward and dorsal retraction of the naris, horizontal stretching of the dorsal meatus quadrati), that are shared only with another new turtle, known also from the same Maastrichtian Phosphates of Morocco. © 2013 Académie des sciences.


Houssaye A.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Houssaye A.,University of Bonn | Rage J..-C.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Bardet N.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | And 3 more authors.
Palaeontology | Year: 2013

Palaeophis maghrebianus belongs to the Palaeophiinae (Palaeophiidae). This snake subfamily is relatively poorly known, and it is mainly represented by disarticulated vertebrae and ribs and by a few vertebral segments. Its intracolumnar variability remains also poorly understood. The discovery of new isolated vertebrae and vertebral segments of Palaeophis maghrebianus in the Ypresian (Lower Eocene) Phosphates of Morocco enables us to provide a more detailed diagnosis of this species and to describe its intracolumnar variability. Moreover, the new material reveals that this species could reach gigantic size being, with Palaeophis colossaeus, one of the two longer palaeophiids. The microanatomical and histological analysis of some vertebrae illustrating diverse positions along the vertebral column reveals the presence of osteosclerosis, especially in the anterior and mid-precloacal regions. The occurrence of this osseous specialization implies a role in buoyancy and body trim control in this taxon, which is considered a shallow marine dweller based on its anatomical features and geological data. Palaeophis maghrebianus also displays a dense vascular network suggesting a growth speed, and thus a metabolic rate, much higher than in the biggest extant snakes. © The Palaeontological Association.


Kocsis L.,University of Lausanne | Gheerbrant E.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Mouflih M.,Faculte des science Ben MSik | Cappetta H.,Montpellier University | And 2 more authors.
Palaeogeography, Palaeoclimatology, Palaeoecology | Year: 2014

Fossil biogenic apatites were studied for their geochemical composition across the late Cretaceous-early Eocene Moroccan phosphate series in the Ouled Abdoun and Ganntour basins in Morocco in order to characterize paleoenvironmental conditions and to improve stratigraphy. The vertebrate remains show particularly good structural, mineralogical and chemical preservations, which relate to the favorable depositional environment of the phosphorite. The main studied fossils - shark tooth enameloid and dentine, and coprolites - show large range in δ13C values from -14 to +6‰, which can be coupled to different carbon sources. Enameloid yielded mostly positive δ13C isotopic compositions that are comparable with values reported from modern teeth. Coprolites have the lowest δ13C values that reflect burial conditions with intensive organic matter recycling.The large variation in δ18OPO4 values of the shark teeth can be related to ecological differences. However, the mean δ18OPO4 data reflect important temporal variation along the series, together with the corresponding average δ13C values. Comparisons with the global isotope records allow identifying the Early Eocene Climatic Optimum in the top of the Ouled Abdoun series (above Bed 0'). The isotope data further suggest a sedimentary gap during the latest Thanetian and the Paleocene Eocene Thermal Maximum. The top of the Paleocene series (Bed IIa) can be dated to late Selandian-early Thanetian, with the recognition of the Early Late Paleocene Event (ELPE). The Eritherium Bone Bed, that yielded the earliest known placental mammals from Africa, would be located below the ELPE and therefore, cannot be younger than late Selandian.The isotope data from the older Paleocene (Bed IIb) and Cretaceous (upper Bed III) beds in the Ouled Abdoun Basin can be correlated with the latest Danian-early Selandian and the latest Maastrichtian global isotope record, respectively. Based on the δ18OPO4 data, the Cretaceous layers of the Ganntour Basin cover most of the Maastrichtian period except the very early part. All these early Paleogene and Cretaceous chemostratigraphic ages, however, need further confirmations from other proxies. Yet, the interpretations are in general agreement with the biostratigraphy derived from the selachian fauna.© 2013 Elsevier B.V.


Gheerbrant E.,French Natural History Museum | Amaghzaz M.,Center Minier Of Khouribga | Bouya B.,Center Minier Of Khouribga | Goussard F.,French Natural History Museum | Letenneur C.,French Natural History Museum
PLoS ONE | Year: 2014

While key early(iest) fossils were recently discovered for several crown afrotherian mammal orders, basal afrotherians, e.g., early Cenozoic species that comprise sister taxa to Paenungulata, Afroinsectiphilia or Afrotheria, are nearly unknown, especially in Africa. Possible stem condylarth-like relatives of the Paenungulata (hyraxes, sea-cows, elephants) include only Abdounodus hamdii and Ocepeia daouiensis from the Selandian of Ouled Abdoun Basin, Morocco, both previously only documented by lower teeth. Here, we describe new fossils of Ocepeia, including O.grandis n. sp., and a sub-complete skull of O. daouiensis, the first known before the Eocene for African placentals. O.daouiensis skull displays a remarkable mosaic of autapomophic, ungulate-like and generalized eutherian-like characters. Autapomorphies include striking anthropoid-like characters of the rostrum and dentition. Besides having a basically eutherian-like skull construction, Ocepeia daouiensis is characterized by ungulate-like, and especially paenungulate-like characters of skull and dentition (e.g., selenodonty). However, some plesiomorphies such as absence of hypocone exclude Ocepeia from crown Paenungulata. Such a combination of plesiomorphic and derived characters best fits with a stem position of Ocepeia relative to Paenungulata. In our cladistic analyses Ocepeia is included in Afrotheria, but its shared derived characters with paenungulates are not optimized as exclusive synapomorphies. Rather, within Afrotheria Ocepeia is reconstructed as more closely related to insectivore-like afroinsectiphilians (i.e., aardvarks, sengis, tenrecs, and golden moles) than to paenungulates. This results from conflict with undetected convergences of Paenungulata and Perissodactyla in our cladistic analysis, such as the shared bilophodonty. The selenodont pattern best supports the stem paenungulate position of Ocepeia; that, however, needs further support. The remarkable character mosaic of Ocepeia makes it the first known "transitional fossil" between insectivore-like and ungulate-like afrotherians. In addition, the autapomorphic family Ocepeiidae supports the old - earliest Tertiary or Cretaceous - endemic evolution of placentals in Africa, in contrast to hypotheses rooting afrotherians in Paleogene Laurasian "condylarths". © 2014 Gheerbrant et al.


Vincent P.,Staatliches Museum fur Naturkunde Rosenstein 1 | Bardet N.,CNRS Center for Research on Palaeobiodiversity and Palaeoenvironments | Houssaye A.,University of Bonn | Amaghzaz M.,Center Minier Of Khouribga | Meslouh S.,Ministere de lEnergie
Gondwana Research | Year: 2013

Several clades of marine tetrapods, including the apex predators mosasaurs and plesiosaurs, disappeared during the mass extinction at the end of the Cretaceous, about 65. My ago. The extreme fossil richness of the Maastrichtian Phosphates of Morocco provides insights into the systematic diversity of the latest mosasaurs where about ten species are known. However, data of the coeval plesiosaurs are comparatively scarce. Up to now, only one species, the elasmosaurid Zarafasaura oceanis, is known. Here we describe new elasmosaurid plesiosaur post-cranial material from the Maastrichtian of the Oulad Abdoun Basin (Morocco) that provides new data about the taxonomical and morphological diversity of plesiosaurs in this area. Most of the new material consists of vertebrae that likely belong to a unique elasmosaurid taxon and differ from all other elasmosaurids documented so far. As Zarafasaura is known only from cranial material, it cannot be determined whether the new material may be assigned to this taxon. The new material shows that the latest Cretaceous plesiosaurs in this low latitude area (about 20°N) were rather gracile, most likely piscivorous taxa that occupied ecological niches similar to those of rather small mosasaurs (e.g., Halisaurus and ". Platecarpus" ptychodon) but distinct from those of most coeval large mosasaur taxa. These plesiosaur fossils are also remarkable in that they consist of both juvenile and adult specimens, suggesting limited segregation between individuals of different ontogenetic stages, a feature that might be attributed to upwelling-related, high nutrient input and food availability in this area during the Maastrichtian. Moreover, the possible occurrence, with older specimens, of a neonate specimen - one among the very few known worldwide - suggests a possible social structure organization. The new data contribute to increase our understanding of Late Cretaceous plesiosaur biodiversity and provide new insights into the ecology of latest Cretaceous marine apex predators. © 2012 International Association for Gondwana Research.

Loading Center Minier Of Khouribga collaborators
Loading Center Minier Of Khouribga collaborators