Center Innovation

Saint-Léonard-de-Noblat, France

Center Innovation

Saint-Léonard-de-Noblat, France
SEARCH FILTERS
Time filter
Source Type

A team of NASA scientists and engineers now believes it can leverage recent advances in a greenhouse-detecting instrument to build the world's first space-based sodium lidar to study Earth's poorly understood mesosphere. Scientist Diego Janches and laser experts Mike Krainak and Tony Yu, all of whom work at NASA's Goddard Space Flight Center in Greenbelt, Maryland, are leading a research-and-development effort to further advance the sodium lidar, which the group plans to deploy on the International Space Station if it succeeds in proving its flightworthiness. NASA's Center Innovation Fund and the Heliophysics Technology and Instrument Development for Science programs are now funding the instrument's maturation. However, the concept traces its heritage in part to NASA's past investments in promising lidar instruments, called Sounders, originally created to measure carbon dioxide and methane in Earth's atmosphere. From its berth on the orbiting outpost, the instrument would illuminate the complex relationship between the chemistry and dynamics of the mesosphere that lies 40-100 miles above Earth's surface -- the region where Earth's atmosphere meets the vacuum of space. Given the progress the researchers have made with the Earth-observing sounding instruments, coupled with Goddard's legacy in laser technology, they are optimistic about the instrument's ultimate success. "What we're doing is leveraging what we learned with the CO2 and Methane Sounders," Krainak said. Both instruments have demonstrated in multiple aircraft campaigns that they accurately measure greenhouse gases using lidar. Lidar involves pulsing a laser light off Earth's surface. Like all atmospheric gases, carbon dioxide and methane absorb the light in narrow wavelength bands. By tuning the laser across those absorption lines, scientists can detect and then analyze the level of gases in that vertical path. The more gas along the light's path, the deeper the absorption lines. "The same principle applies here," Janches said. "Instead of carbon dioxide and methane, we're detecting sodium because of what it can tell us about the small-scale dynamics occurring in the mesosphere." Sodium -- the sixth most abundant element in Earth's crust -- is a useful tracer for characterizing the mesosphere. Though this atmospheric layer contains other granules of metals, including iron, magnesium, calcium, and potassium -- all produced by the evaporation of extraterrestrial dust when it encounters Earth's atmosphere -- sodium is easiest to detect. Literally, a layer of sodium exists in the mesosphere. Because of its relative abundance, sodium provides higher-resolution data that can reveal more information about the small-scale dynamics occurring in the upper atmosphere. From this, scientists can learn more about how weather in the lower atmosphere influences the border between the atmosphere and space. The group has begun developing its instrument, which is electronically tuned to the 589-nanometer range, or yellow light. While in orbit, the lidar would rapidly pulse the light at the mesospheric layer, down one to three kilometers over a swath measuring four to eight kilometers in width. The light's interaction with sodium particles would cause them to glow or resonate. By detecting the glow-back, the lidar's onboard spectrometer would analyze the light to determine how much sodium resided in the mesosphere, its temperature, and the speed at which the particles were moving. Scientists have used sodium lidars in ground-based measurements for at least four decades, but they never have gathered measurements from space. As a result, the data is limited in time and space and does not offer a global picture of the dynamics. With a specially designed spaceborne sodium lidar, however, scientists would be able to illuminate specific areas, revealing the small-scale dynamics that currently are the biggest unknown, Janches said. The team will use NASA's funding to fine-tune the technology that locks the lidar onto the sodium lines. "It's like a guitar string," Krainak explained. "If you want a certain tone, you need to lock down the string at a particular length. It's the same thing with the laser cavity length." The team also plans to demonstrate an environmentally tested engineering test unit of the laser, thereby improving its technology-readiness level to six, which means that the technology is ready for flight development. "We've made significant progress on the laser," Krainak said. "If we win, we could be the first space-based sodium laser spectrometer for remote sensing." For more technology news, go to https:/


Scientist Diego Janches and laser experts Mike Krainak and Tony Yu, all of whom work at NASA's Goddard Space Flight Center in Greenbelt, Maryland, are leading a research-and-development effort to further advance the sodium lidar, which the group plans to deploy on the International Space Station if it succeeds in proving its flightworthiness. NASA's Center Innovation Fund and the Heliophysics Technology and Instrument Development for Science programs are now funding the instrument's maturation. However, the concept traces its heritage in part to NASA's past investments in promising lidar instruments, called Sounders, originally created to measure carbon dioxide and methane in Earth's atmosphere. From its berth on the orbiting outpost, the instrument would illuminate the complex relationship between the chemistry and dynamics of the mesosphere that lies 40-100 miles above Earth's surface—the region where Earth's atmosphere meets the vacuum of space. Given the progress the researchers have made with the Earth-observing sounding instruments, coupled with Goddard's legacy in laser technology, they are optimistic about the instrument's ultimate success. "What we're doing is leveraging what we learned with the CO2 and Methane Sounders," Krainak said. Both instruments have demonstrated in multiple aircraft campaigns that they accurately measure greenhouse gases using lidar. Lidar involves pulsing a laser light off Earth's surface. Like all atmospheric gases, carbon dioxide and methane absorb the light in narrow wavelength bands. By tuning the laser across those absorption lines, scientists can detect and then analyze the level of gases in that vertical path. The more gas along the light's path, the deeper the absorption lines. "The same principle applies here," Janches said. "Instead of carbon dioxide and methane, we're detecting sodium because of what it can tell us about the small-scale dynamics occurring in the mesosphere." Sodium—the sixth most abundant element in Earth's crust—is a useful tracer for characterizing the mesosphere. Though this atmospheric layer contains other granules of metals, including iron, magnesium, calcium, and potassium—all produced by the evaporation of extraterrestrial dust when it encounters Earth's atmosphere—sodium is easiest to detect. Literally, a layer of sodium exists in the mesosphere. Because of its relative abundance, sodium provides higher-resolution data that can reveal more information about the small-scale dynamics occurring in the upper atmosphere. From this, scientists can learn more about how weather in the lower atmosphere influences the border between the atmosphere and space. The group has begun developing its instrument, which is electronically tuned to the 589-nanometer range, or yellow light. While in orbit, the lidar would rapidly pulse the light at the mesospheric layer, down one to three kilometers over a swath measuring four to eight kilometers in width. The light's interaction with sodium particles would cause them to glow or resonate. By detecting the glow-back, the lidar's onboard spectrometer would analyze the light to determine how much sodium resided in the mesosphere, its temperature, and the speed at which the particles were moving. Scientists have used sodium lidars in ground-based measurements for at least four decades, but they never have gathered measurements from space. As a result, the data is limited in time and space and does not offer a global picture of the dynamics. With a specially designed spaceborne sodium lidar, however, scientists would be able to illuminate specific areas, revealing the small-scale dynamics that currently are the biggest unknown, Janches said. The team will use NASA's funding to fine-tune the technology that locks the lidar onto the sodium lines. "It's like a guitar string," Krainak explained. "If you want a certain tone, you need to lock down the string at a particular length. It's the same thing with the laser cavity length." The team also plans to demonstrate an environmentally tested engineering test unit of the laser, thereby improving its technology-readiness level to six, which means that the technology is ready for flight development. "We've made significant progress on the laser," Krainak said. "If we win, we could be the first space-based sodium laser spectrometer for remote sensing."


News Article | November 1, 2016
Site: phys.org

Branimir Blagojevic, a NASA technologist at the Goddard Space Flight Center in Greenbelt, Maryland, formerly worked for a company that developed the sensor. He has applied the technology to create an instrument prototype, proving in testing that the same remote-sensing technology used to identify bio-hazards in public places also could be effective at detecting organic bio-signatures on Mars. BILI is a fluorescence-based lidar, a type of remote-sensing instrument similar to radar in principle and operation. Instead of using radio waves, however, lidar instruments use light to detect and ultimately analyze the composition of particles in the atmosphere. Although NASA has used fluorescence instruments to detect chemicals in Earth's atmosphere as part of its climate-studies research, the agency so far hasn't employed the technique in planetary studies. "NASA has never used it before for planetary ground level exploration. If the agency develops it, it will be the first of a kind," Blagojevic said. As a planetary-exploration tool, Blagojevic and his team, Goddard scientists Melissa Trainer and Alexander Pavlov, envision BILI as primarily "a rover's sense of smell." Positioned on a rover's mast, BILI would first scan the terrain looking for dust plumes. Once detected, the instrument, then would command its two ultraviolet lasers to pulse light at the dust. The illumination would cause the particles inside these dust clouds to resonate or fluoresce. By analyzing the fluorescence, scientists could determine if the dust contained organic particles created relatively recently or in the past. The data also would reveal the particles' size. "If the bio-signatures are there, it could be detected in the dust," Blagojevic said The beauty of BILI, Blagojevic added, is its ability to detect in real-time small levels of complex organic materials from a distance of several hundred meters. Therefore, it could autonomously search for bio-signatures in plumes above recurring slopes—areas not easily traversed by a rover carrying a variety of in-situ instruments for detailed chemical and biological analysis. Furthermore, because it could do a ground-level aerosol analysis from afar, BILI reduces the risk of sample contamination that could skew the results. "This makes our instrument an excellent complementary organic-detection instrument, which we could use in tandem with more sensitive, point sensor-type mass spectrometers that can only measure a small amount of material at once," Blagojevic said. "BILI's measurements do not require consumables other than electrical power and can be conducted quickly over a broad area. This is a survey instrument, with a nose for certain molecules." With such a tool, which also could be installed on an orbiting spacecraft, NASA could dramatically increase the probability of finding bio-signatures in the solar system, he added. "We are ready to integrate and test this novel instrument, which would be capable of detecting a number organic bio-signatures," Blagojevic said. "Our goal is increasing the likelihood of their discovery." Blagojevic hopes to further advance BILI by ruggedizing the design, reducing its size, and confirming that it can detect tiny concentrations of a broad range of organic molecules, particularly in aerosols that would be found at the ground level on Mars. "This sensing technique is a product of two decades of research," Blagojevic said, referring to the technology created by his former employer, Science and Engineering Services, LLC.. Blagojevic and his team used NASA's Center Innovation Fund, or CIF, to advance the technology. CIF stimulates and encourages creativity and innovation within NASA, targeting less mature, yet promising new technologies. Explore further: Microscope will seek biological samples on red planet


News Article | November 1, 2016
Site: www.eurekalert.org

A sensing technique that the U.S. military currently uses to remotely monitor the air to detect potentially life-threatening chemicals, toxins, and pathogens has inspired a new instrument that could "sniff" for life on Mars and other targets in the solar system -- the Bio-Indicator Lidar Instrument, or BILI. Branimir Blagojevic, a NASA technologist at the Goddard Space Flight Center in Greenbelt, Maryland, formerly worked for a company that developed the sensor. He has applied the technology to create an instrument prototype, proving in testing that the same remote-sensing technology used to identify bio-hazards in public places also could be effective at detecting organic bio-signatures on Mars. BILI is a fluorescence-based lidar, a type of remote-sensing instrument similar to radar in principle and operation. Instead of using radio waves, however, lidar instruments use light to detect and ultimately analyze the composition of particles in the atmosphere. Although NASA has used fluorescence instruments to detect chemicals in Earth's atmosphere as part of its climate-studies research, the agency so far hasn't employed the technique in planetary studies. "NASA has never used it before for planetary ground level exploration. If the agency develops it, it will be the first of a kind," Blagojevic said. As a planetary-exploration tool, Blagojevic and his team, Goddard scientists Melissa Trainer and Alexander Pavlov, envision BILI as primarily "a rover's sense of smell." Positioned on a rover's mast, BILI would first scan the terrain looking for dust plumes. Once detected, the instrument, then would command its two ultraviolet lasers to pulse light at the dust. The illumination would cause the particles inside these dust clouds to resonate or fluoresce. By analyzing the fluorescence, scientists could determine if the dust contained organic particles created relatively recently or in the past. The data also would reveal the particles' size. "If the bio-signatures are there, it could be detected in the dust," Blagojevic said The beauty of BILI, Blagojevic added, is its ability to detect in real-time small levels of complex organic materials from a distance of several hundred meters. Therefore, it could autonomously search for bio-signatures in plumes above recurring slopes -- areas not easily traversed by a rover carrying a variety of in-situ instruments for detailed chemical and biological analysis. Furthermore, because it could do a ground-level aerosol analysis from afar, BILI reduces the risk of sample contamination that could skew the results. "This makes our instrument an excellent complementary organic-detection instrument, which we could use in tandem with more sensitive, point sensor-type mass spectrometers that can only measure a small amount of material at once," Blagojevic said. "BILI's measurements do not require consumables other than electrical power and can be conducted quickly over a broad area. This is a survey instrument, with a nose for certain molecules." With such a tool, which also could be installed on an orbiting spacecraft, NASA could dramatically increase the probability of finding bio-signatures in the solar system, he added. "We are ready to integrate and test this novel instrument, which would be capable of detecting a number organic bio-signatures," Blagojevic said. "Our goal is increasing the likelihood of their discovery." Blagojevic hopes to further advance BILI by ruggedizing the design, reducing its size, and confirming that it can detect tiny concentrations of a broad range of organic molecules, particularly in aerosols that would be found at the ground level on Mars. "This sensing technique is a product of two decades of research," Blagojevic said, referring to the technology created by his former employer, Science and Engineering Services, LLC.. Blagojevic and his team used NASA's Center Innovation Fund, or CIF, to advance the technology. CIF stimulates and encourages creativity and innovation within NASA, targeting less mature, yet promising new technologies. For more Goddard technology news, go to: http://gsfctechnology.


News Article | November 28, 2016
Site: www.businesswire.com

CAMBRIDGE--(BUSINESS WIRE)--Cambridge Broadband Networks (CBNL), the market leader in licensed point-to-multipoint (PMP) microwave and millimeter wave, has today announced it received top honors at the 2016 Fierce Innovation Awards – winning both the ‘Backhaul’ category and being named Best in Show for ‘Best Cost Center Innovation’. CBNL received the awards in recognition of its breakthrough VectaStar® PMP millimeter wave platform, which addresses carriers’ need to efficiently scale capacity an


News Article | November 1, 2016
Site: www.sciencedaily.com

A sensing technique that the U.S. military currently uses to remotely monitor the air to detect potentially life-threatening chemicals, toxins, and pathogens has inspired a new instrument that could "sniff" for life on Mars and other targets in the solar system -- the Bio-Indicator Lidar Instrument, or BILI. Branimir Blagojevic, a NASA technologist at the Goddard Space Flight Center in Greenbelt, Maryland, formerly worked for a company that developed the sensor. He has applied the technology to create an instrument prototype, proving in testing that the same remote-sensing technology used to identify bio-hazards in public places also could be effective at detecting organic bio-signatures on Mars. BILI is a fluorescence-based lidar, a type of remote-sensing instrument similar to radar in principle and operation. Instead of using radio waves, however, lidar instruments use light to detect and ultimately analyze the composition of particles in the atmosphere. Although NASA has used fluorescence instruments to detect chemicals in Earth's atmosphere as part of its climate-studies research, the agency so far hasn't employed the technique in planetary studies. "NASA has never used it before for planetary ground level exploration. If the agency develops it, it will be the first of a kind," Blagojevic said. As a planetary-exploration tool, Blagojevic and his team, Goddard scientists Melissa Trainer and Alexander Pavlov, envision BILI as primarily "a rover's sense of smell." Positioned on a rover's mast, BILI would first scan the terrain looking for dust plumes. Once detected, the instrument, then would command its two ultraviolet lasers to pulse light at the dust. The illumination would cause the particles inside these dust clouds to resonate or fluoresce. By analyzing the fluorescence, scientists could determine if the dust contained organic particles created relatively recently or in the past. The data also would reveal the particles' size. "If the bio-signatures are there, it could be detected in the dust," Blagojevic said The beauty of BILI, Blagojevic added, is its ability to detect in real-time small levels of complex organic materials from a distance of several hundred meters. Therefore, it could autonomously search for bio-signatures in plumes above recurring slopes -- areas not easily traversed by a rover carrying a variety of in-situ instruments for detailed chemical and biological analysis. Furthermore, because it could do a ground-level aerosol analysis from afar, BILI reduces the risk of sample contamination that could skew the results. "This makes our instrument an excellent complementary organic-detection instrument, which we could use in tandem with more sensitive, point sensor-type mass spectrometers that can only measure a small amount of material at once," Blagojevic said. "BILI's measurements do not require consumables other than electrical power and can be conducted quickly over a broad area. This is a survey instrument, with a nose for certain molecules." With such a tool, which also could be installed on an orbiting spacecraft, NASA could dramatically increase the probability of finding bio-signatures in the solar system, he added. "We are ready to integrate and test this novel instrument, which would be capable of detecting a number organic bio-signatures," Blagojevic said. "Our goal is increasing the likelihood of their discovery." Blagojevic hopes to further advance BILI by ruggedizing the design, reducing its size, and confirming that it can detect tiny concentrations of a broad range of organic molecules, particularly in aerosols that would be found at the ground level on Mars. "This sensing technique is a product of two decades of research," Blagojevic said, referring to the technology created by his former employer, Science and Engineering Services, LLC.. Blagojevic and his team used NASA's Center Innovation Fund, or CIF, to advance the technology. CIF stimulates and encourages creativity and innovation within NASA, targeting less mature, yet promising new technologies.


News Article | November 1, 2016
Site: astrobiology.com

A sensing technique that the U.S. military currently uses to remotely monitor the air to detect potentially life-threatening chemicals, toxins, and pathogens has inspired a new instrument that could "sniff" for life on Mars and other targets in the solar system -- the Bio-Indicator Lidar Instrument, or BILI. Branimir Blagojevic, a NASA technologist at the Goddard Space Flight Center in Greenbelt, Maryland, formerly worked for a company that developed the sensor. He has applied the technology to create an instrument prototype, proving in testing that the same remote-sensing technology used to identify bio-hazards in public places also could be effective at detecting organic bio-signatures on Mars. BILI is a fluorescence-based lidar, a type of remote-sensing instrument similar to radar in principle and operation. Instead of using radio waves, however, lidar instruments use light to detect and ultimately analyze the composition of particles in the atmosphere. Although NASA has used fluorescence instruments to detect chemicals in Earth's atmosphere as part of its climate-studies research, the agency so far hasn't employed the technique in planetary studies. "NASA has never used it before for planetary ground level exploration. If the agency develops it, it will be the first of a kind," Blagojevic said. As a planetary-exploration tool, Blagojevic and his team, Goddard scientists Melissa Trainer and Alexander Pavlov, envision BILI as primarily "a rover's sense of smell." Positioned on a rover's mast, BILI would first scan the terrain looking for dust plumes. Once detected, the instrument, then would command its two ultraviolet lasers to pulse light at the dust. The illumination would cause the particles inside these dust clouds to resonate or fluoresce. By analyzing the fluorescence, scientists could determine if the dust contained organic particles created relatively recently or in the past. The data also would reveal the particles' size. "If the bio-signatures are there, it could be detected in the dust," Blagojevic said The beauty of BILI, Blagojevic added, is its ability to detect in real-time small levels of complex organic materials from a distance of several hundred meters. Therefore, it could autonomously search for bio-signatures in plumes above recurring slopes -- areas not easily traversed by a rover carrying a variety of in-situ instruments for detailed chemical and biological analysis. Furthermore, because it could do a ground-level aerosol analysis from afar, BILI reduces the risk of sample contamination that could skew the results. "This makes our instrument an excellent complementary organic-detection instrument, which we could use in tandem with more sensitive, point sensor-type mass spectrometers that can only measure a small amount of material at once," Blagojevic said. "BILI's measurements do not require consumables other than electrical power and can be conducted quickly over a broad area. This is a survey instrument, with a nose for certain molecules." With such a tool, which also could be installed on an orbiting spacecraft, NASA could dramatically increase the probability of finding bio-signatures in the solar system, he added. "We are ready to integrate and test this novel instrument, which would be capable of detecting a number organic bio-signatures," Blagojevic said. "Our goal is increasing the likelihood of their discovery." Blagojevic hopes to further advance BILI by ruggedizing the design, reducing its size, and confirming that it can detect tiny concentrations of a broad range of organic molecules, particularly in aerosols that would be found at the ground level on Mars. "This sensing technique is a product of two decades of research," Blagojevic said, referring to the technology created by his former employer, Science and Engineering Services, LLC.. Blagojevic and his team used NASA's Center Innovation Fund, or CIF, to advance the technology. CIF stimulates and encourages creativity and innovation within NASA, targeting less mature, yet promising new technologies.


News Article | February 15, 2017
Site: phys.org

Mahmooda Sultana, a research engineer at NASA's Goddard Space Flight Center in Greenbelt, Maryland, now is collaborating with Moungi Bawendi, a chemistry professor at the Cambridge-based Massachusetts Institute of Technology, or MIT, to develop a prototype imaging spectrometer based on the emerging quantum-dot technology that Bawendi's group pioneered. NASA's Center Innovation Fund, which supports potentially trailblazing, high-risk technologies, is funding the effort. Quantum dots are a type of semiconductor nanocrystal discovered in the early 1980s. Invisible to the naked eye, the dots have proven in testing to absorb different wavelengths of light depending on their size, shape, and chemical composition. The technology is promising to applications that rely on the analysis of light, including smartphone cameras, medical devices, and environmental-testing equipment. "This is as novel as it gets," Sultana said, referring to the technology that she believes could miniaturize and potentially revolutionize space-based spectrometers, particularly those used on uninhabited aerial vehicles and small satellites. "It really could simplify instrument integration." Absorption spectrometers, as their name implies, measure the absorption of light as a function of frequency or wavelength due to its interaction with a sample, such as atmospheric gases. After passing through or interacting with the sample, the light reaches the spectrometer. Traditional spectrometers use gratings, prisms, or interference filters to split the light into its component wavelengths, which their detector pixels then detect to produce spectra. The more intense the absorption in the spectra, the greater the presence of a specific chemical. While space-based spectrometers are getting smaller due to miniaturization, they still are relatively large, Sultana said. "Higher-spectral resolution requires long optical paths for instruments that use gratings and prisms. This often results in large instruments. Whereas here, with quantum dots that act like filters that absorb different wavelengths depending on their size and shape, we can make an ultra-compact instrument. In other words, you could eliminate optical parts, like gratings, prisms, and interference filters." Just as important, the technology allows the instrument developer to generate nearly an unlimited number of different dots. As their size decreases, the wavelength of the light that the quantum dots will absorb decreases. "This makes it possible to produce a continuously tunable, yet distinct, set of absorptive filters where each pixel is made of a quantum dot of a specific size, shape, or composition. We would have precise control over what each dot absorbs. We could literally customize the instrument to observe many different bands with high-spectral resolution." With her NASA technology-development support, Sultana is working to develop, qualify through thermal vacuum and vibration tests, and demonstrate a 20-by-20 quantum-dot array sensitive to visible wavelengths needed to image the sun and the aurora. However, the technology easily can be expanded to cover a broader range of wavelengths, from ultraviolet to mid-infrared, which may find many potential space applications in Earth science, heliophysics, and planetary science, she said. Under the collaboration, Sultana is developing an instrument concept particularly for a CubeSat application and MIT doctoral student Jason Yoo is investigating techniques for synthesizing different precursor chemicals to create the dots and then printing them onto a suitable substrate. "Ultimately, we would want to print the dots directly onto the detector pixels," she said. "This is a very innovative technology," Sultana added, conceding that it is very early in its development. "But we're trying to raise its technology-readiness level very quickly. Several space-science opportunities that could benefit are in the pipeline." Explore further: Quantum-dot spectrometer is small enough to function within a smartphone


News Article | February 15, 2017
Site: www.eurekalert.org

A NASA technologist has teamed with the inventor of a new nanotechnology that could transform the way space scientists build spectrometers, the all-important device used by virtually all scientific disciplines to measure the properties of light emanating from astronomical objects, including Earth itself. Mahmooda Sultana, a research engineer at NASA's Goddard Space Flight Center in Greenbelt, Maryland, now is collaborating with Moungi Bawendi, a chemistry professor at the Cambridge-based Massachusetts Institute of Technology, or MIT, to develop a prototype imaging spectrometer based on the emerging quantum-dot technology that Bawendi's group pioneered. NASA's Center Innovation Fund, which supports potentially trailblazing, high-risk technologies, is funding the effort. Quantum dots are a type of semiconductor nanocrystal discovered in the early 1980s. Invisible to the naked eye, the dots have proven in testing to absorb different wavelengths of light depending on their size, shape, and chemical composition. The technology is promising to applications that rely on the analysis of light, including smartphone cameras, medical devices, and environmental-testing equipment. "This is as novel as it gets," Sultana said, referring to the technology that she believes could miniaturize and potentially revolutionize space-based spectrometers, particularly those used on uninhabited aerial vehicles and small satellites. "It really could simplify instrument integration." Absorption spectrometers, as their name implies, measure the absorption of light as a function of frequency or wavelength due to its interaction with a sample, such as atmospheric gases. After passing through or interacting with the sample, the light reaches the spectrometer. Traditional spectrometers use gratings, prisms, or interference filters to split the light into its component wavelengths, which their detector pixels then detect to produce spectra. The more intense the absorption in the spectra, the greater the presence of a specific chemical. While space-based spectrometers are getting smaller due to miniaturization, they still are relatively large, Sultana said. "Higher-spectral resolution requires long optical paths for instruments that use gratings and prisms. This often results in large instruments. Whereas here, with quantum dots that act like filters that absorb different wavelengths depending on their size and shape, we can make an ultra-compact instrument. In other words, you could eliminate optical parts, like gratings, prisms, and interference filters." Just as important, the technology allows the instrument developer to generate nearly an unlimited number of different dots. As their size decreases, the wavelength of the light that the quantum dots will absorb decreases. "This makes it possible to produce a continuously tunable, yet distinct, set of absorptive filters where each pixel is made of a quantum dot of a specific size, shape, or composition. We would have precise control over what each dot absorbs. We could literally customize the instrument to observe many different bands with high-spectral resolution." With her NASA technology-development support, Sultana is working to develop, qualify through thermal vacuum and vibration tests, and demonstrate a 20-by-20 quantum-dot array sensitive to visible wavelengths needed to image the sun and the aurora. However, the technology easily can be expanded to cover a broader range of wavelengths, from ultraviolet to mid-infrared, which may find many potential space applications in Earth science, heliophysics, and planetary science, she said. Under the collaboration, Sultana is developing an instrument concept particularly for a CubeSat application and MIT doctoral student Jason Yoo is investigating techniques for synthesizing different precursor chemicals to create the dots and then printing them onto a suitable substrate. "Ultimately, we would want to print the dots directly onto the detector pixels," she said. "This is a very innovative technology," Sultana added, conceding that it is very early in its development. "But we're trying to raise its technology-readiness level very quickly. Several space-science opportunities that could benefit are in the pipeline." For more Goddard technology news, go to: http://gsfctechnology.


News Article | February 15, 2017
Site: www.cemag.us

A NASA technologist has teamed with the inventor of a new nanotechnology that could transform the way space scientists build spectrometers, the all-important device used by virtually all scientific disciplines to measure the properties of light emanating from astronomical objects, including Earth itself. Mahmooda Sultana, a research engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md., now is collaborating with Moungi Bawendi, a chemistry professor at the Cambridge-based Massachusetts Institute of Technology, or MIT, to develop a prototype imaging spectrometer based on the emerging quantum-dot technology that Bawendi’s group pioneered. NASA’s Center Innovation Fund, which supports potentially trailblazing, high-risk technologies, is funding the effort. Quantum dots are a type of semiconductor nanocrystal discovered in the early 1980s. Invisible to the naked eye, the dots have proven in testing to absorb different wavelengths of light depending on their size, shape, and chemical composition. The technology is promising to applications that rely on the analysis of light, including smartphone cameras, medical devices, and environmental-testing equipment. “This is as novel as it gets,” Sultana says, referring to the technology that she believes could miniaturize and potentially revolutionize space-based spectrometers, particularly those used on uninhabited aerial vehicles and small satellites. “It really could simplify instrument integration.” Absorption spectrometers, as their name implies, measure the absorption of light as a function of frequency or wavelength due to its interaction with a sample, such as atmospheric gases. After passing through or interacting with the sample, the light reaches the spectrometer. Traditional spectrometers use gratings, prisms, or interference filters to split the light into its component wavelengths, which their detector pixels then detect to produce spectra. The more intense the absorption in the spectra, the greater the presence of a specific chemical. While space-based spectrometers are getting smaller due to miniaturization, they still are relatively large, Sultana says. “Higher-spectral resolution requires long optical paths for instruments that use gratings and prisms. This often results in large instruments. Whereas here, with quantum dots that act like filters that absorb different wavelengths depending on their size and shape, we can make an ultra-compact instrument. In other words, you could eliminate optical parts, like gratings, prisms, and interference filters.” Just as important, the technology allows the instrument developer to generate nearly an unlimited number of different dots. As their size decreases, the wavelength of the light that the quantum dots will absorb decreases. “This makes it possible to produce a continuously tunable, yet distinct, set of absorptive filters where each pixel is made of a quantum dot of a specific size, shape, or composition. We would have precise control over what each dot absorbs. We could literally customize the instrument to observe many different bands with high-spectral resolution.” With her NASA technology-development support, Sultana is working to develop, qualify through thermal vacuum and vibration tests, and demonstrate a 20-by-20 quantum-dot array sensitive to visible wavelengths needed to image the sun and the aurora. However, the technology easily can be expanded to cover a broader range of wavelengths, from ultraviolet to mid-infrared, which may find many potential space applications in Earth science, heliophysics, and planetary science, she says. Under the collaboration, Sultana is developing an instrument concept particularly for a CubeSat application and MIT doctoral student Jason Yoo is investigating techniques for synthesizing different precursor chemicals to create the dots and then printing them onto a suitable substrate. “Ultimately, we would want to print the dots directly onto the detector pixels,” she says. “This is a very innovative technology,” Sultana adds, conceding that it is very early in its development. “But we’re trying to raise its technology-readiness level very quickly. Several space-science opportunities that could benefit are in the pipeline.”

Loading Center Innovation collaborators
Loading Center Innovation collaborators