Entity

Time filter

Source Type


Evers E.G.,Center for Zoonoses and Environmental Microbiology National Institute for Public Health and the Environment Bilthoven The Netherlands | Bouwknegt M.,Center for Zoonoses and Environmental Microbiology National Institute for Public Health and the Environment Bilthoven The Netherlands
Risk Analysis | Year: 2016

The disease burden of pathogens as estimated by QMRA (quantitative microbial risk assessment) and EA (epidemiological analysis) often differs considerably. This is an unsatisfactory situation for policymakers and scientists. We explored methods to obtain a unified estimate using campylobacteriosis in the Netherlands as an example, where previous work resulted in estimates of 4.9 million (QMRA) and 90,600 (EA) cases per year. Using the maximum likelihood approach and considering EA the gold standard, the QMRA model could produce the original EA estimate by adjusting mainly the dose-infection relationship. Considering QMRA the gold standard, the EA model could produce the original QMRA estimate by adjusting mainly the probability that a gastroenteritis case is caused by Campylobacter. A joint analysis of QMRA and EA data and models assuming identical outcomes, using a frequentist or Bayesian approach (using vague priors), resulted in estimates of 102,000 or 123,000 campylobacteriosis cases per year, respectively. These were close to the original EA estimate, and this will be related to the dissimilarity in data availability. The Bayesian approach further showed that attenuating the condition of equal outcomes immediately resulted in very different estimates of the number of campylobacteriosis cases per year and that using more informative priors had little effect on the results. In conclusion, EA was dominant in estimating the burden of campylobacteriosis in the Netherlands. However, it must be noted that only statistical uncertainties were taken into account here. Taking all, usually difficult to quantify, uncertainties into account might lead to a different conclusion. © 2016 Society for Risk Analysis. Source


Evers E.G.,Center for Zoonoses and Environmental Microbiology National Institute for Public Health and the Environment Bilthoven The Netherlands | Blaak H.,Center for Zoonoses and Environmental Microbiology National Institute for Public Health and the Environment Bilthoven The Netherlands | Hamidjaja R.A.,Center for Zoonoses and Environmental Microbiology National Institute for Public Health and the Environment Bilthoven The Netherlands | de Jonge R.,Center for Zoonoses and Environmental Microbiology National Institute for Public Health and the Environment Bilthoven The Netherlands | Schets F.M.,Center for Zoonoses and Environmental Microbiology National Institute for Public Health and the Environment Bilthoven The Netherlands
Risk Analysis | Year: 2015

The public health significance of transmission of ESBL-producing Escherichia coli and Campylobacter from poultry farms to humans through flies was investigated using a worst-case risk model. Human exposure was modeled by the fraction of contaminated flies, the number of specific bacteria per fly, the number of flies leaving the poultry farm, and the number of positive poultry houses in the Netherlands. Simplified risk calculations for transmission through consumption of chicken fillet were used for comparison, in terms of the number of human exposures, the total human exposure, and, for Campylobacter only, the number of human cases of illness. Comparing estimates of the worst-case risk of transmission through flies with estimates of the real risk of chicken fillet consumption, the number of human exposures to ESBL-producing E. coli was higher for chicken fillet as compared with flies, but the total level of exposure was higher for flies. For Campylobacter, risk values were nearly consistently higher for transmission through flies than for chicken fillet consumption. This indicates that the public health risk of transmission of both ESBL-producing E. coli and Campylobacter to humans through flies might be of importance. It justifies further modeling of transmission through flies for which additional data (fly emigration, human exposure) are required. Similar analyses of other environmental transmission routes from poultry farms are suggested to precede further investigations into flies. © 2015 Society for Risk Analysis. Source

Discover hidden collaborations