Time filter

Source Type

Soares H.C.,Center for Weather Forecast and Climate Studies | Soares H.C.,National Institute for Space Research | Pezzi L.P.,Center for Weather Forecast and Climate Studies | Pezzi L.P.,National Institute for Space Research | And 2 more authors.
Scientia Marina | Year: 2011

Relative maxima and minima of landings of Brazilian sardine captured in the Southeast Brazil Bight (SBB) were compared with oceanic and atmospheric composites relative to the spawning period in December and January, prior to these landings. Atmospheric and oceanic variables such as wind stress, Ekman transport, mixing index, sea surface temperature (SST), precipitation, outgoing long wave radiation and geopotential height were analyzed, revealing distinct climatological patterns in the SBB for these extreme catches that have not been described before. The system could be characterized by cooler SST composite anomaly (SSTA) along the SBB as a response to increased cloud cover and reduced incidence of short-wave radiation, predominating one year before the Brazilian sardine catch maxima. This system can take on a different configuration in which positive SSTA condition in the SBB is associated with a less intense South Atlantic Convergence Zone displaced southwards one year before the period of minimum catch. Our results indicate that the spatial structure of the spawning habitat is influenced by specific ocean-atmosphere interactions rather than simply resulting from the choice of a stable environment. This climatic constraint strongly affects the interannual variability of the Brazilian sardine production.

Da Silveira I.P.,National Institute for Space Research | Da Silveira I.P.,Center for Weather Forecast and Climate Studies | Pezzi L.P.,National Institute for Space Research
Ocean Dynamics | Year: 2014

Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers. © 2014 Springer-Verlag Berlin Heidelberg.

Cunningham C.A.,Center for Weather Forecast and Climate Studies | Bonatti J.P.,Center for Weather Forecast and Climate Studies
Theoretical and Applied Climatology | Year: 2011

This work examines the near-surface responses, in the Southern Hemisphere atmosphere, to a reduction and an excess of sea ice cover in the Ross Sea. Large ensembles (60 members) of the Atmospheric General Circulation Model of the Center for Weather Forecast and Climate Studies (AGCM-CPTEC) are used for this purpose. Locally, when the sea ice cover decreases (increases), heat fluxes, temperature, and pressure increase (decreases). A principal component analysis of temperature and geopotential height identifies the potential remote connections. We have found three main results: first, an association between the sea ice cover in the Ross Sea and a wave train that resembles the Pacific South American (PSA) pattern; second, a relationship between temperatures in the Ross Sea and in the southern South America; and third, an apparent correspondence between reduced sea ice cover in the Ross Sea and the subtropical jet over Australia. © 2011 Springer-Verlag.

Loading Center for Weather Forecast and Climate Studies collaborators
Loading Center for Weather Forecast and Climate Studies collaborators