Time filter

Source Type

Baltimore Highlands, MD, United States

Belkin A.M.,Center for Vascular and Inflammatory Diseases | Belkin A.M.,University of Maryland Baltimore County
FEBS Journal

Tissue transglutaminase (TG2) is a ubiquitously expressed member of the transglutaminase family of Ca 2+-dependent crosslinking enzymes. Unlike other family members, TG2 is a multifunctional protein, which has several other well documented enzymatic and non-enzymatic functions. A significant body of evidence accumulated over the last decade reveals multiple and complex activities of this protein on the cell surface and in the extracellular matrix (ECM), including its role in the regulation of cell-ECM interactions and outside-in signaling by several types of transmembrane receptors. Moreover, recent findings indicate a dynamic regulation of the levels and functions of extracellular TG2 by several complementary mechanisms. This review summarizes and assesses recent research into the emerging functions and regulation of extracellular TG2. © 2011 FEBS. Source

Driesbaugh K.H.,Center for Vascular and Inflammatory Diseases | Buzza M.S.,Center for Vascular and Inflammatory Diseases | Martin E.W.,Center for Vascular and Inflammatory Diseases | Conway G.D.,Center for Vascular and Inflammatory Diseases | And 3 more authors.
Journal of Biological Chemistry

Protease-activated receptors (PARs) are a family of seventransmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface.This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Source

Porter H.A.,Center for Vascular and Inflammatory Diseases | Porter H.A.,University of Maryland Baltimore County | Carey G.B.,Center for Vascular and Inflammatory Diseases | Carey G.B.,University of Maryland Baltimore County | And 2 more authors.
Experimental Cell Research

The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. © 2012 Elsevier Inc.. Source

Craig J.,Center for Vascular and Inflammatory Diseases | Mikhailenko I.,Center for Vascular and Inflammatory Diseases | Mikhailenko I.,University of Maryland Baltimore County | Noyes N.,Center for Vascular and Inflammatory Diseases | And 4 more authors.

Background:The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule.Methodology/Principal Findings:To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis.Conclusions/Significance:Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events. © 2013 Craig et al. Source

Discover hidden collaborations