Oxford, United Kingdom
Oxford, United Kingdom

Time filter

Source Type

Dogovski C.,University of Melbourne | Xie S.C.,University of Melbourne | Burgio G.,Australian National University | Burgio G.,Macquarie University | And 16 more authors.
PLoS Biology | Year: 2015

Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance. © 2015 Dogovski et al.


White N.J.,Mahidol University | White N.J.,Center for Tropical Medicine | Pukrittayakamee S.,Mahidol University | Hien T.T.,University of Oxford | And 4 more authors.
The Lancet | Year: 2014

Although global morbidity and mortality have decreased substantially, malaria, a parasite infection of red blood cells, still kills roughly 2000 people per day, most of whom are children in Africa. Two factors largely account for these decreases; increased deployment of insecticide-treated bednets and increased availability of highly effective artemisinin combination treatments. In large trials, parenteral artesunate (an artemisinin derivative) reduced severe malaria mortality by 22·5% in Africa and 34·7% in Asia compared with quinine, whereas adjunctive interventions have been uniformly unsuccessful. Rapid tests have been an important addition to microscopy for malaria diagnosis. Chemopreventive strategies have been increasingly deployed in Africa, notably intermittent sulfadoxine-pyrimethamine treatment in pregnancy, and monthly amodiaquine-sulfadoxine-pyrimethamine during the rainy season months in children aged between 3 months and 5 years across the sub-Sahel. Enthusiasm for malaria elimination has resurfaced. This ambitious but laudable goal faces many challenges, including the worldwide economic downturn, difficulties in elimination of vivax malaria, development of pyrethroid resistance in some anopheline mosquitoes, and the emergence of artemisinin resistance in Plasmodium falciparum in southeast Asia. We review the epidemiology, clinical features, pathology, prevention, and treatment of malaria.


Jamsen K.M.,University of Melbourne | Duffull S.B.,University of Otago | Tarning J.,Mahidol University | Tarning J.,Center for Tropical Medicine | And 5 more authors.
Malaria Journal | Year: 2012

Background: Artemisinin-based combination therapy (ACT) is currently recommended as first-line treatment for uncomplicated malaria, but of concern, it has been observed that the effectiveness of the main artemisinin derivative, artesunate, has been diminished due to parasite resistance. This reduction in effect highlights the importance of the partner drugs in ACT and provides motivation to gain more knowledge of their pharmacokinetic (PK) properties via population PK studies. Optimal design methodology has been developed for population PK studies, which analytically determines a sampling schedule that is clinically feasible and yields precise estimation of model parameters. In this work, optimal design methodology was used to determine sampling designs for typical future population PK studies of the partner drugs (mefloquine, lumefantrine, piperaquine and amodiaquine) co-administered with artemisinin derivatives. Methods. The optimal designs were determined using freely available software and were based on structural PK models from the literature and the key specifications of 100 patients with five samples per patient, with one sample taken on the seventh day of treatment. The derived optimal designs were then evaluated via a simulation-estimation procedure. Results: For all partner drugs, designs consisting of two sampling schedules (50 patients per schedule) with five samples per patient resulted in acceptable precision of the model parameter estimates. Conclusions: The sampling schedules proposed in this paper should be considered in future population pharmacokinetic studies where intensive sampling over many days or weeks of follow-up is not possible due to either ethical, logistic or economical reasons. © 2012Jamsen et al.; licensee BioMed Central Ltd.


Lubell Y.,Mahidol University | Lubell Y.,Center for Tropical Medicine | Dondorp A.,Mahidol University | Dondorp A.,Center for Tropical Medicine | And 13 more authors.
Malaria Journal | Year: 2014

Background: Artemisinin combination therapy is recommended as first-line treatment for falciparum malaria across the endemic world and is increasingly relied upon for treating vivax malaria where chloroquine is failing. Artemisinin resistance was first detected in western Cambodia in 2007, and is now confirmed in the Greater Mekong region, raising the spectre of a malaria resurgence that could undo a decade of progress in control, and threaten the feasibility of elimination. The magnitude of this threat has not been quantified. Methods: This analysis compares the health and economic consequences of two future scenarios occurring once artemisinin-based treatments are available with high coverage. In the first scenario, artemisinin combination therapy (ACT) is largely effective in the management of uncomplicated malaria and severe malaria is treated with artesunate, while in the second scenario ACT are failing at a rate of 30%, and treatment of severe malaria reverts to quinine. The model is applied to all malaria-endemic countries using their specific estimates for malaria incidence, transmission intensity and GDP. The model describes the direct medical costs for repeated diagnosis and retreatment of clinical failures as well as admission costs for severe malaria. For productivity losses, the conservative friction costing method is used, which assumes a limited economic impact for individuals that are no longer economically active until they are replaced from the unemployment pool. Results: Using conservative assumptions and parameter estimates, the model projects an excess of 116,000 deaths annually in the scenario of widespread artemisinin resistance. The predicted medical costs for retreatment of clinical failures and for management of severe malaria exceed US$32 million per year. Productivity losses resulting from excess morbidity and mortality were estimated at US$385 million for each year during which failing ACT remained in use as first-line treatment. Conclusions: These 'ballpark' figures for the magnitude of the health and economic threat posed by artemisinin resistance add weight to the call for urgent action to detect the emergence of resistance as early as possible and contain its spread from known locations in the Mekong region to elsewhere in the endemic world. © 2014 Lubell et al.


PubMed | Imperial College London, Center for Tropical Medicine, University of Oxford and University of Melbourne
Type: | Journal: Lancet (London, England) | Year: 2015

Dengue infection can result in a wide spectrum of disease. The defining feature of severe disease is increased capillary permeability, which can lead to hypovolaemic shock. Microvascular and endothelial dysfunction might underlie hypovolaemic shock, but they have not been assessed clinically. We aimed to investigate the use of microvascular assessment as a prognostic method in dengue.This is an ongoing prospective observational study that aims to recruit 300 participants: children over the age of 3 years and adults presenting to two outpatient departments in Vietnam with fever of less than 72 h duration and suspected dengue, and patients admitted to hospital with warning signs or severe disease. Participants are being clinically assessed daily for 6 days, and 2 weeks later. Microvascular imaging using sublingual sidestream darkfield imaging (SDF) and endothelial function testing using peripheral artery tonometry are being performed at enrolment, defervescence, and follow-upTo date, 167 patients have been recruited (92 outpatient arm, 75 inpatient arm, median age 27 years [IQR 21-33], 78 male [47%]). Dengue has been confirmed in 67 individuals in the outpatient arm, of whom 29 (43%) developed warning signs, three (4%) developed severe disease, and 35 had uncomplicated dengue; the other 25 outpatients (27%) were diagnosed as other febrile illness. At enrolment, the reactive hyperaemic index, a marker of endothelial function, was lowest in the patients who went on to develop severe dengue (median 154, IQR 136-177) followed by those who developed warning signs (178, 143-236) and then uncomplicated dengue (218, 165-224). Initial SDF results showed a lower proportion of perfused vessels and mean flow index during the febrile phase of dengue compared with follow-up, and were worst in the severe group at defervescence.This study of vascular function at serial timepoints in dengue is, to our knowledge, the first and most comprehensive. Our preliminary results suggest that microvascular and endothelial dysfunction are associated with severity of dengue, and occur before the appearance of severe clinical manifestations. These techniques might be useful in risk prediction in dengue. A limitation is that a formal sample size could not be calculated because no previous microvascular data in dengue exist.Wellcome Trust.


Gharbi M.,University of Paris Descartes | Gharbi M.,EHESP School of Public Health | Pillai D.R.,Public Health Ontario | Pillai D.R.,University of Calgary | And 15 more authors.
Emerging Infectious Diseases | Year: 2012

We investigated chloroquine sensitivity to Plasmodium falciparum in travelers returning to France and Canada from Haiti during a 23-year period. Two of 19 isolates obtained after the 2010 earthquake showed mixed pfcrt 76K+T genotype and high 50% inhibitory concentration. Physicians treating malaria acquired in Haiti should be aware of possible chloroquine resistance.

Loading Center for Tropical Medicine collaborators
Loading Center for Tropical Medicine collaborators