Time filter

Source Type

Baba L.A.,Hassan II University | Ailal F.,Hassan II University | El Hafidi N.,Avicennes University Hospital | Hubeau M.,French Institute of Health and Medical Research | And 27 more authors.
Journal of Clinical Immunology | Year: 2014

Purpose: Chronic granulomatous disease (CGD) is characterized by an inability of phagocytes to produce reactive oxygen species (ROS), which are required to kill some microorganisms. CGD patients are known to suffer from recurrent bacterial and/or fungal infections from the first year of life onwards. From 2009 to 2013, 12 cases of CGD were diagnosed in Morocco. We describe here these Moroccan cases of CGD. Methods: We investigated the genetic, immunological and clinical features of 12 Moroccan patients with CGD from 10 unrelated kindreds. Results: All patients were children suffering from recurrent bacterial and/or fungal infections. All cases displayed impaired NADPH oxidase activity in nitroblue tetrazolium (NBT), dihydrorhodamine (DHR) or 2′,7′ dichlorofluorescein diacetate (DCFH-DA) assays. Mutation analysis revealed the presence of four different mutations of CYBB in four kindreds, a recurrent mutation of NCF1 in three kindreds, and a new mutation of NCF2 in three patients from a single kindred. A large deletion of CYBB gene has detected in a patient. The causal mutation in the remaining one kindred was not identified. Conclusion: The clinical features and infectious agents found in these patients were similar to those in CGD patients from elsewhere. The results of mutation analysis differed between kindreds, revealing a high level of genetic and allelic heterogeneity among Moroccan CGD patients. The small number of patients in our cohort probably reflects a lack of awareness of physicians. Further studies on a large cohort are required to determine the incidence and prevalence of the disease, and to improve the description of the genetic and clinical features of CGD patients in Morocco. © 2014 Springer Science+Business Media.

Weller S.,University of Paris Descartes | Bonnet M.,University of Paris Descartes | Delagreverie H.,University of Paris Descartes | Israel L.,University of Paris Descartes | And 26 more authors.
Blood | Year: 2012

We studied the distribution of peripheral B-cell subsets in patients deficient for key factors of the TLR-signaling pathways (MyD88, TIRAP/MAL, IL-1 receptor-associated kinase 4 [IRAK-4], TLR3, UNC-93B, TRIF). All TLRs, except TLR3, which signals through the TRIF adaptor, require MyD88 and IRAK-4 to mediate their function. TLR4 and the TLR2 heterodimers (with TLR1, TLR6, and possibly TLR10) require in addition the adaptor TIRAP, whereas UNC-93B is needed for the proper localization of intracellular TLR3, TLR7, TLR8, and TLR9. We found that IgM+IgD+CD27+ but not switched B cells were strongly reduced in MyD88-, IRAK-4-, and TIRAP-deficient patients. This defect did not appear to be compensated with age. However, somatic hypermutation of Ig genes and heavy-chain CDR3 size distribution of IgM +IgD+CD27+ B cells were not affected in these patients. In contrast, the numbers of IgM+IgD+CD27 + B cells were normal in the absence of TLR3, TRIF, and UNC-93B, suggesting that UNC-93B-dependent TLRs, and notably TLR9, are dispensable for the presence of this subset in peripheral blood. Interestingly, TLR10 was found to be expressed at greater levels in IgM+IgD+CD27 + compared with switched B cells in healthy patients. Hence, we propose a role for TIRAP-dependent TLRs, possibly TLR10 in particular, in the development and/or maintenance of IgM+IgD+CD27+ B cells in humans. © 2012 by The American Society of Hematology.

Loading Center for the Study of Primary Immunodeficiencies collaborators
Loading Center for the Study of Primary Immunodeficiencies collaborators