Entity

Time filter

Source Type


Bickelmann C.,Leibniz Institute For Evolutions Und Biodiversitatsforschung | Morrow J.M.,University of Toronto | Du J.,University of Toronto | Schott R.K.,University of Toronto | And 5 more authors.
Evolution | Year: 2015

The nocturnal origin of mammals is a longstanding hypothesis that is considered instrumental for the evolution of endothermy, a potential key innovation in this successful clade. This hypothesis is primarily based on indirect anatomical inference from fossils. Here, we reconstruct the evolutionary history of rhodopsin-the vertebrate visual pigment mediating the first step in phototransduction at low-light levels-via codon-based model tests for selection, combined with gene resurrection methods that allow for the study of ancient proteins. Rhodopsin coding sequences were reconstructed for three key nodes: Amniota, Mammalia, and Theria. When expressed in vitro, all sequences generated stable visual pigments with λMAX values similar to the well-studied bovine rhodopsin. Retinal release rates of mammalian and therian ancestral rhodopsins, measured via fluorescence spectroscopy, were significantly slower than those of the amniote ancestor, indicating altered molecular function possibly related to nocturnality. Positive selection along the therian branch suggests adaptive evolution in rhodopsin concurrent with therian ecological diversification events during the Mesozoic that allowed for an exploration of the environment at varying light levels. © 2015, Society for the Study of Evolution.


De Lucas M.,University of California at Davis | Provart N.J.,Center for the Analysis of Genome Evolution and Function | Brady S.M.,University of California at Davis
Methods in Molecular Biology | Year: 2014

Bioinformatic tools are an increasingly important resource for Arabidopsis researchers. With them, it is possible to rapidly query the large data sets covering genomes, transcriptomes, proteomes, epigenomes, and other "omes" that have been generated in the past decade. Often these tools can be used to generate quality hypotheses at the click of a mouse. In this chapter, we cover the use of bioinformatic tools for examining gene expression and coexpression patterns, performing promoter analyses, looking for functional classification enrichment for sets of genes, and investigating protein-protein interactions. We also introduce bioinformatic tools that allow integration of data from several sources for improved hypothesis generation. © 2014 Springer Science+Business Media New York.


Heath K.D.,Urbana University | Burke P.V.,Urbana University | Stinchcombe J.R.,Center for the Analysis of Genome Evolution and Function
Molecular Ecology | Year: 2012

Coevolutionary change requires reciprocal selection between interacting species, where the partner genotypes that are favoured in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype × genotype (G × G) interactions for fitness in interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G × G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G × G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation had the largest influence on nodule gene expression and that plant genotype and the plant genotype × rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome and illuminates potential molecular routes of coevolutionary change. See also the Perspective by Simms and Porter © 2012 Blackwell Publishing Ltd.


Du J.,University of Toronto | Dungan S.Z.,University of Toronto | Sabouhanian A.,University of Toronto | Chang B.S.,University of Toronto | Chang B.S.,Center for the Analysis of Genome Evolution and Function
BMC Evolutionary Biology | Year: 2014

Background: Synonymous codon usage can affect many cellular processes, particularly those associated with translation such as polypeptide elongation and folding, mRNA degradation/stability, and splicing. Highly expressed genes are thought to experience stronger selection pressures on synonymous codons. This should result in codon usage bias even in species with relatively low effective population sizes, like mammals, where synonymous site selection is thought to be weak. Here we use phylogenetic codon-based likelihood models to explore patterns of codon usage bias in a dataset of 18 mammalian rhodopsin sequences, the protein mediating the first step in vision in the eye, and one of the most highly expressed genes in vertebrates. We use these patterns to infer selection pressures on key translational mechanisms including polypeptide elongation, protein folding, mRNA stability, and splicing. Results: Overall, patterns of selection in mammalian rhodopsin appear to be correlated with post-transcriptional and translational processes. We found significant evidence for selection at synonymous sites using phylogenetic mutation-selection likelihood models, with C-ending codons found to have the highest relative fitness, and to be significantly more abundant at conserved sites. In general, these codons corresponded with the most abundant tRNAs in mammals. We found significant differences in codon usage bias between rhodopsin loops versus helices, though there was no significant difference in mean synonymous substitution rate between these motifs. We also found a significantly higher proportion of GC-ending codons at paired sites in rhodopsin mRNA secondary structure, and significantly lower synonymous mutation rates in putative exonic splicing enhancer (ESE) regions than in non-ESE regions. Conclusions: By focusing on a single highly expressed gene we both distinguish synonymous codon selection from mutational effects and analytically explore underlying functional mechanisms. Our results suggest that codon bias in mammalian rhodopsin arises from selection to optimally balance high overall translational speed, accuracy, and proper protein folding, especially in structurally complicated regions. Selection at synonymous sites may also be contributing to mRNA stability and splicing efficiency at exonic-splicing-enhancer (ESE) regions. Our results highlight the importance of investigating highly expressed genes in a broader phylogenetic context in order to better understand the evolution of synonymous substitutions. © 2014 Du et al.; licensee BioMed Central Ltd.


Dungan S.Z.,University of Toronto | Kosyakov A.,University of Toronto | Chang B.S.W.,University of Toronto | Chang B.S.W.,Center for the Analysis of Genome Evolution and Function
Molecular Biology and Evolution | Year: 2016

Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Discover hidden collaborations