Time filter

Source Type

Loscher W.,Leibniz University of Hanover | Loscher W.,Center for Systems Neuroscience
Neurochemical Research | Year: 2017

The identification of potential therapeutic agents for the treatment of epilepsy requires the use of seizure models. Except for some early treatments, including bromides and phenobarbital, the antiseizure activity of all clinically used drugs was, for the most part, defined by acute seizure models in rodents using the maximal electroshock and subcutaneous pentylenetetrazole seizure tests and the electrically kindled rat. Unfortunately, the clinical evidence to date would suggest that none of these models, albeit useful, are likely to identify those therapeutics that will effectively manage patients with drug resistant seizures. Over the last 30 years, a number of animal models have been developed that display varying degrees of pharmacoresistance, such as the phenytoin- or lamotrigine-resistant kindled rat, the 6-Hz mouse model of partial seizures, the intrahippocampal kainate model in mice, or rats in which spontaneous recurrent seizures develops after inducing status epilepticus by chemical or electrical stimulation. As such, these models can be used to study mechanisms of drug resistance and may provide a unique opportunity for identifying a truly novel antiseizure drug (ASD), but thus far clinical evidence for this hope is lacking. Although animal models of drug resistant seizures are now included in ASD discovery approaches such as the ETSP (epilepsy therapy screening program), it is important to note that no single model has been validated for use to identify potential compounds for as yet drug resistant seizures, but rather a battery of such models should be employed, thus enhancing the sensitivity to discover novel, highly effective ASDs. The present review describes the previous and current approaches used in the search for new ASDs and offers some insight into future directions incorporating new and emerging animal models of therapy resistance. © 2017 Springer Science+Business Media New York


Loscher W.,University of Veterinary Medicine Hannover | Loscher W.,Center for Systems Neuroscience
Seizure | Year: 2011

Animal models for seizures and epilepsy have played a fundamental role in advancing our understanding of basic mechanisms underlying ictogenesis and epileptogenesis and have been instrumental in the discovery and preclinical development of novel antiepileptic drugs (AEDs). However, there is growing concern that the efficacy of drug treatment of epilepsy has not substantially improved with the introduction of new AEDs, which, at least in part, may be due to the fact that the same simple screening models, i.e., the maximal electroshock seizure (MES) and s.c. pentylenetetrazole (PTZ) seizure tests, have been used as gatekeepers in AED discovery for >6 decades. It has been argued that these old models may identify only drugs that share characteristics with existing drugs, and are unlikely to have an effect on refractory epilepsies. Indeed, accumulating evidence with several novel AEDs, including levetiracetan, has shown that the MES and PTZ models do not identify all potential AEDs but instead may fail to discover compounds that have great potential efficacy but work through mechanisms not tested by these models. Awareness of the limitations of acute seizure models comes at a critical crossroad. Clearly, preclinical strategies of AED discovery and development need a conceptual shift that is moving away from using models that identify therapies for the symptomatic treatment of epilepsy to those that may be useful for identifying therapies that are more effective in the refractory population and that may ultimately lead to an effective cure in susceptible individuals by interfering with the processes underlying epilepsy. To realize this goal, the molecular mechanisms of the next generation of therapies must necessarily evolve to include targets that contribute to epileptogenesis and pharmacoresistance in relevant epilepsy models. © 2011 British Epilepsy Association.


Loscher W.,University of Veterinary Medicine Hannover | Loscher W.,Center for Systems Neuroscience
Epilepsy and Behavior | Year: 2015

Drug-refractory status epilepticus (RSE) is a major medical emergency with a mortality of up to 40% and the risk of severe long-term consequences. The mechanisms involved in RSE are incompletely understood. Animal models are important in developing treatment strategies for more effective termination of SE and prevention of its long-term outcomes. The pilocarpine and lithium-pilocarpine rat models are widely used in this respect. In these models, resistance to diazepam and other antiseizure drugs (ASDs) develops during SE so that an SE that is longer than 30 min is difficult to suppress. Furthermore, because all ASDs used in SE treatment are much more rapidly eliminated by rodents than by humans, SE recurs several hours after ASD treatment. Long-term consequences include hippocampal damage, behavioral alterations, and epilepsy with spontaneous recurrent seizures. In this review, different rational polytherapies for SE, which are more effective than monotherapies, are discussed, including a novel polytherapy recently developed by our group. Based on data from diverse seizure models, we hypothesized that cholinergic mechanisms are involved in the mechanisms underlying ASD resistance of SE. We, therefore, developed an intravenous drug cocktail, consisting of diazepam, phenobarbital, and the anticholinergic scopolamine. This drug combination irreversibly terminated SE when administered 60, 90, or 120 min after SE onset. The efficacy of this cocktail in terminating SE was comparable with the previously reported efficacy of polytherapies with the glutamate receptor antagonist ketamine. Furthermore, when injected 60 min after SE onset, the scopolamine-containing cocktail prevented development of epilepsy and hippocampal neurodegeneration, which was not observed with high doses of diazepam or a combination of phenobarbital and diazepam. Our data add to the existing preclinical evidence that rational polytherapy can be more effective than monotherapy in the treatment of SE and that combinatorial therapy may offer a clinically useful option for the treatment of RSE. © 2015 Elsevier Inc.


Romermann K.,University of Veterinary Medicine Hannover | Romermann K.,Center for Systems Neuroscience | Helmer R.,Pharmacological Laboratory of the Society for Epilepsy Research | Loscher W.,University of Veterinary Medicine Hannover | Loscher W.,Center for Systems Neuroscience
Neuropharmacology | Year: 2015

Resistance to antiepileptic drugs (AEDs) is the major problem in the treatment of epilepsy. One hypothesis to explain AED resistance suggests that seizure-induced overexpression of efflux transporters at the blood-brain barrier (BBB) restricts AEDs to reach their brain targets. Various studies examined whether AEDs are substrates of P-glycoprotein (Pgp; MDR1; ABCB1), whereas information about the potential role of breast cancer resistance protein (BCRP; ABCG2) is scanty. We used a highly sensitive in vitro assay (concentration equilibrium transport assay; CETA) with MDCKII cells transduced with murine Bcrp1 or human BCRP to evaluate whether AEDs are substrates of this major efflux transporter. Six of 7 AEDs examined, namely phenytoin, phenobarbital, carbamazepine, levetiracetam, topiramate, and valproate, were not transported by Bcrp at therapeutic concentrations, whereas lamotrigine exhibited a marked asymmetric, Bcrp-mediated transport in the CETA, which could be almost completely inhibited with the Bcrp inhibitor Ko143. Significant but less marked transport of lamotrigine was determined in MDCK cells transfected with human BCRP. Lamotrigine is also a substrate of human Pgp, so that this drug is the first AED that has been identified as a dual substrate of the two major human efflux transporters at the BBB. Previous in vivo studies have demonstrated a synergistic or cooperative role of Pgp and Bcrp in the efflux of dual substrates at the BBB, so that transport of lamotrigine by Pgp and BCRP may be an important mechanism of pharmacoresistance in epilepsy patients in whom both transporters are overexpressed. © 2015 Elsevier Ltd. All rights reserved.


Loscher W.,University of Veterinary Medicine Hannover | Brandt C.,Center for Systems Neuroscience
Epilepsia | Year: 2010

Purpose: Progress in the management of patients with medically intractable epilepsy is impeded because we do not fully understand why pharmacoresistance happens and how it can be predicted. The presence of multiple seizures prior to medical treatment has been suggested as a potential predictor of poor outcome. In the present study, we used an animal model of temporal lobe epilepsy to investigate whether pharmacoresistant rats differ in seizure frequency from pharmacoresponsive animals. Methods: Epilepsy with spontaneous recurrent seizures (SRS) was induced by status epilepticus. Frequency of SRS was determined by video/EEG (electroencephalography) monitoring in a total of 33 epileptic rats before onset of treatment with phenobarbital (PB). Results: Thirteen (39%) rats did not respond to treatment with PB. Before treatment with PB, average seizure frequency in PB nonresponders was significantly higher than seizure frequency in responders, which, however, was due to six nonresponders that exhibited > 3 seizures per day. Such high seizure frequency was not observed in responders, demonstrating that high seizure frequency predicts pharmacoresistance in this model, but does not occur in all nonresponders. Discussion: The data from this study are in line with clinical experience that the frequency of seizures in the early phase of epilepsy is a dominant risk factor that predicts refractoriness. However, resistance to treatment also occurred in rats that did not differ in seizure frequency from responders, indicating that disease severity alone is not sufficient to explain antiepileptic drug (AED) resistance. These data provide further evidence that epilepsy models are useful in the search for predictors and mechanisms of pharmacoresistance. © 2009 International League Against Epilepsy.


Broer S.,University of Veterinary Medicine Hannover | Loscher W.,Center for Systems Neuroscience
Epilepsy and Behavior | Year: 2015

The discovery and validation of biomarkers in neurological and neurodegenerative diseases is an important challenge for early diagnosis of disease and for the development of therapeutics. Epilepsy is often a consequence of brain insults such as traumatic brain injury or stroke, but as yet no biomarker exists to predict the development of epilepsy in patients at risk. Given the complexity of epilepsy, it is unlikely that a single biomarker is sufficient for this purpose, but a combinatorial approach may be needed to overcome the challenge of individual variability and disease heterogeneity. The goal of the present prospective study in the lithium-pilocarpine model of epilepsy in rats was to determine the discriminative utility of combinations of phenotypic biomarkers by examining their ability to predict epilepsy. For this purpose, we used a recent model refinement that allows comparing rats that will or will not develop spontaneous recurrent seizures (SRS) after pilocarpine-induced status epilepticus (SE). Potential biomarkers included in our study were seizure threshold and seizure severity in response to timed i.v. infusion of pentylenetetrazole (PTZ) and behavioral alterations determined by a battery of tests during the three weeks following SE. Three months after SE, video/EEG monitoring was used to determine which rats had developed SRS. To determine whether a biomarker or combination of biomarkers performed better than chance at predicting epilepsy after SE, derived data underwent receiver operating characteristic (ROC) curve analyses. When comparing rats with and without SRS and sham controls, the best intergroup discrimination was obtained by combining all measurements, resulting in a ROC area under curve (AUC) of 0.9592 (P. <. 0.01), indicating an almost perfect discrimination or accuracy to predict development of SRS. These data indicate that a combinatorial biomarker approach may overcome the challenge of individual variability in the prediction of epilepsy. © 2015 Elsevier Inc.


White H.S.,University of Utah | Loscher W.,University of Veterinary Medicine Hannover | Loscher W.,Center for Systems Neuroscience
Neurotherapeutics | Year: 2014

A major unmet medical need is the lack of treatments to prevent (or modify) epilepsy in patients at risk, for example, after epileptogenic brain insults such as traumatic brain injury, stroke, or prolonged acute symptomatic seizures like complex febrile seizures or status epilepticus. Typically, following such brain insults there is a seizure-free interval ("latent period"), lasting months to years before the onset of spontaneous recurrent epileptic seizures. The latent period after a brain insult offers a window of opportunity in which an appropriate treatment may prevent or modify the epileptogenic process induced by a brain insult. A similar latent period occurs in patients with epileptogenic gene mutations. Studies using animal models of epilepsy have led to a greater understanding of the factors underlying epileptogenesis and have provided significant insight into potential targets by which the development of epilepsy may be prevented or modified. This review focuses largely on some of the most common animal models of epileptogenesis and their potential utility for evaluating proposed antiepileptogenic therapies and identifying useful biomarkers. The authors also describe some of the limitations of using animal models in the search for therapies that move beyond the symptomatic treatment of epilepsy. Promising results of previous studies designed to evaluate antiepileptogenesis and the role of monotherapy versus polytherapy approaches are also discussed. Recent data from both models of genetic and acquired epilepsies strongly indicate that it is possible to prevent or modify epileptogenesis, and, hopefully, such promising results can ultimately be translated into the clinic. © 2014 The American Society for Experimental NeuroTherapeutics, Inc.


Rundfeldt C.,Drug Consult.Net | Loscher W.,University of Veterinary Medicine Hannover | Loscher W.,Center for Systems Neuroscience
CNS Drugs | Year: 2014

Although benzodiazepines (BZDs) offer a wide spectrum of antiepileptic activity against diverse types of epileptic seizures, their use in the treatment of epilepsy is limited because of adverse effects, loss of efficacy (tolerance), and development of physical and psychological dependence. BZDs act as positive allosteric modulators of the inhibitory neurotransmitter GABA by binding to the BZD recognition site ("BZD receptor") of the GABA A receptor. Traditional BZDs such as diazepam or clonazepam act as full agonists at this site, so that one strategy to resolve the disadvantages of these compounds would be the development of partial agonists with lower intrinsic efficacy at the BZD site of the GABAA receptor. Several BZD site partial or subtype selective compounds, including bretazenil, abecarnil, or alpidem, have been developed as anxioselective anxiolytic drugs, but epilepsy was not a target indication for such compounds. More recently, the imidazolone derivatives imepitoin (ELB138) and ELB139 were shown to act as low-affinity partial agonists at the BZD site of the GABAA receptor, and imepitoin was developed for the treatment of epilepsy. Imepitoin displayed a broad spectrum of anticonvulsant activity in diverse seizure and epilepsy models at tolerable doses, and, as expected from its mechanism of action, lacked tolerance and abuse liability in rodent and primate models. The more favorable pharmacokinetic profile of imepitoin in dogs versus humans led to the decision to develop imepitoin for the treatment of canine epilepsy. Based on randomized controlled trials that demonstrated antiepileptic efficacy and high tolerability and safety in epileptic dogs, the drug was recently approved for this indication in Europe. Hopefully, the favorable profile of imepitoin for the treatment of epilepsy in dogs will reactivate the interest in partial BZD site agonists as new treatments for human epilepsy. © 2013 Springer International Publishing Switzerland.


Loscher W.,University of Veterinary Medicine Hannover | Brandt C.,Center for Systems Neuroscience
Pharmacological Reviews | Year: 2010

Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics.


Steinmetz S.,University of Veterinary Medicine Hannover | Tipold A.,University of Veterinary Medicine Hannover | Tipold A.,Center for Systems Neuroscience | Loscher W.,Center for Systems Neuroscience | Loscher W.,University of Veterinary Medicine Hannover
Epilepsia | Year: 2013

Purpose In humans, traumatic brain injury (TBI) is one of the most common causes of acquired (symptomatic) epilepsy, but as yet there is no treatment to prevent the development of epilepsy after TBI. Animal models of posttraumatic epilepsy (PTE) are important to characterize epileptogenic mechanisms of TBI and to identify clinically effective antiepileptogenic treatments. The prevalence and phenomenology of naturally occurring canine epilepsy are similar to those in human epilepsy. However, the risk of epilepsy after TBI has not been systemically studied in dogs. We therefore performed a large retrospective study in 1,000 dogs referred to our clinical department over a period of 11.5 years with the aim to determine the incidence of early and late seizures after head trauma in this species. Methods Two strategies were used: in group I (n = 392), we evaluated whether dogs referred for the treatment of a head trauma (group Ia) or other trauma (group Ib) developed seizures after the trauma, whereas in group II (n = 608) we evaluated whether dogs referred for the treatment of recurrent epileptic seizures had a history of head trauma. Data for this study were obtained from our clinical database, questionnaires sent to the dogs' owners, and owner interviews. Key Findings In group Ia, 6.6% of the dogs developed PTE, which was significantly different from group Ib (1.9%), indicating that head trauma increased the risk of developing epilepsy by a factor of 3.4. The risk of PTE increased with severity of TBI; 14.3% of the dogs with skull fracture developed PTE. In group II, 15.5% of the dogs with epilepsy had a history of head injury, which was significantly higher than the incidence of PTE determined for group Ia. Significance Our study indicates that head trauma in dogs is associated with a significant risk of developing epilepsy. Therefore, dogs with severe TBI are an interesting natural model of PTE that provides a novel translational platform for studies on human PTE. © 2012 International League Against Epilepsy.

Loading Center for Systems Neuroscience collaborators
Loading Center for Systems Neuroscience collaborators