Time filter

Source Type

Marburg an der Lahn, Germany

Hempel F.,Center for Synthetic Microbiology | Maier U.G.,Center for Synthetic Microbiology | Maier U.G.,University of Marburg
Microbial Cell Factories | Year: 2012

Background: Although there are many different expression systems for recombinant production of pharmaceutical proteins, many of these suffer from drawbacks such as yield, cost, complexity of purification, and possible contamination with human pathogens. Microalgae have enormous potential for diverse biotechnological applications and currently attract much attention in the biofuel sector. Still underestimated, though, is the idea of using microalgae as solar-fueled expression system for the production of recombinant proteins.Results: In this study, we show for the first time that completely assembled and functional human IgG antibodies can not only be expressed to high levels in algal systems, but also secreted very efficiently into the culture medium. We engineered the diatom Phaeodactylum tricornutum to synthesize and secrete a human IgG antibody against the Hepatitis B Virus surface protein. As the diatom P. tricornutum is not known to naturally secrete many endogenous proteins, the secreted antibodies are already very pure making extensive purification steps redundant and production extremely cost efficient.Conclusions: Microalgae combine rapid growth rates with all the advantages of eukaryotic expression systems, and offer great potential for solar-powered, low cost production of pharmaceutical proteins. © 2012 Hempel and Maier; licensee BioMed Central Ltd. Source

Grosche C.,University of Marburg | Funk H.T.,University of Marburg | Funk H.T.,Implen GmbH | Maier U.G.,University of Marburg | And 2 more authors.
Genome Biology and Evolution | Year: 2012

RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. © The Author(s) 2012. Source

Stehlik T.,University of Marburg | Stehlik T.,Center for Synthetic Microbiology | Sandrock B.,University of Marburg | Ast J.,University of Marburg | And 2 more authors.
Current Opinion in Microbiology | Year: 2014

Peroxisomes are nearly ubiquitous single-membrane organelles harboring multiple metabolic pathways beside their prominent role in the β-oxidation of fatty acids. Here we review the diverse metabolic functions of peroxisomes in fungi. A variety of fungal metabolites are at least partially synthesized inside peroxisomes. These include the essential co-factor biotin but also different types of secondary metabolites. Peroxisomal metabolites are often derived from acyl-CoA esters in for example β-oxidation intermediates. In several ascomycetes a subtype of peroxisomes has been identified that is metabolically inactive but is required to plug the septal pores of wounded hyphae. Thus, peroxisomes are versatile organelles that can adapt their function to the life style of an organism. This remarkable variability suggests that the full extent of the biosynthetic capacity of peroxisomes is still elusive. Moreover, in fungi peroxisomes are non-essential under laboratory conditions making them attractive organelles for biotechnological approaches and the design of novel metabolic pathways in customized peroxisomes. © 2014 Elsevier Ltd. All rights reserved. Source

Specht M.,Albert Ludwigs University of Freiburg | Dempwolff F.,Albert Ludwigs University of Freiburg | Schatzle S.,University Hospital Freiburg | Schatzle S.,Albert Ludwigs University of Freiburg | And 4 more authors.
Journal of Bacteriology | Year: 2013

Of the various kinds of cell division, the most common mode is binary fission, the division of a cell into two morphologically identical daughter cells. However, in the case of asymmetric cell division, Caulobacter crescentus produces two morphologically and functionally distinct cell types. Here, we have studied cell cycle progression of the human pathogen Helicobacter pylori using a functional green fluorescent protein (GFP) fusion of FtsZ protein and membrane staining. In small cells, representing newly divided cells, FtsZ localizes to a single cell pole. During the cell cycle, spiral intermediates are formed until an FtsZ ring is positioned with very little precision, such that central as well as acentral rings can be observed. Daughter cells showed considerably different sizes, suggesting that H. pylori divides asymmetrically. Fluorescence recovery after photobleaching (FRAP) analyses demonstrate that the H. pylori FtsZ ring is about as dynamic as that of Escherichia coli but that polar assemblies show less turnover. Strikingly, our results demonstrate that H. pylori cell division follows a different route from that in E. coli and Bacillus subtilis. It is also different from that in C. crescentus, where cytokinesis regulation proteins like MipZ play a role. Therefore, this report provides the first cell-biological analysis of FtsZ dynamics in the human pathogen H. pylori and even in epsilonproteobacteria to our knowledge. In addition, analysis of the filament architecture of H. pylori and E. coli FtsZ filaments in the heterologous system of Drosophila melanogaster S2 Schneider cells revealed that both have different filamentation properties in vivo, suggesting a unique intrinsic characteristic of each protein. © 2013, American Society for Microbiology. Source

Kiekebusch D.,Max Planck Institute for Terrestrial Microbiology | Kiekebusch D.,University of Marburg | Kiekebusch D.,Center for Synthetic Microbiology | Thanbichler M.,Max Planck Institute for Terrestrial Microbiology | And 2 more authors.
Trends in Microbiology | Year: 2014

The formation of protein concentration gradients is an effective means to restrict the activity of regulatory factors in space, thereby critically contributing to the spatiotemporal organization of biological systems. Although widely observed for extracellular proteins involved in tissue patterning, the implementation of this regulatory strategy was thought to be impossible in single, micron-sized cells. Recently, however, several intracellular proteins were shown to establish gradient-like distribution patterns, thereby relaying positional information to their downstream targets. In this review, we discuss gradient-forming systems from different microbial species, with an emphasis on their mode of action and the common principles that underlie their function. © 2013 Elsevier Ltd. Source

Discover hidden collaborations