Time filter

Source Type

Sootla A.,Center for Synthetic Biology and Innovation | Strelkowa N.,Boehringer Ingelheim | Ernst D.,University of Liège | Barahona M.,Imperial College London | Stan G.-B.,Center for Synthetic Biology and Innovation
Proceedings of the IEEE Conference on Decision and Control | Year: 2013

In this paper, we consider the periodic reference tracking problem in the framework of batch-mode reinforcement learning, which studies methods for solving optimal control problems from the sole knowledge of a set of trajectories. In particular, we extend an existing batch-mode reinforcement learning algorithm, known as Fitted Q Iteration, to the periodic reference tracking problem. The presented periodic reference tracking algorithm explicitly exploits a priori knowledge of the future values of the reference trajectory and its periodicity. We discuss the properties of our approach and illustrate it on the problem of reference tracking for a synthetic biology gene regulatory network known as the generalised repressilator. This system can produce decaying but long-lived oscillations, which makes it an interesting application for the tracking problem. ©2013 IEEE.


Kelwick R.,Center for Synthetic Biology and Innovation | Kopniczky M.,Center for Synthetic Biology and Innovation | Bower I.,Center for Synthetic Biology and Innovation | Chi W.,Center for Synthetic Biology and Innovation | And 13 more authors.
PLoS ONE | Year: 2015

Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB). © 2015 Kelwick et al.


PubMed | South Kensington Campus and Center for Synthetic Biology and Innovation
Type: | Journal: Biotechnology journal | Year: 2017

Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the TetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, we demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway.


PubMed | Imperial College London and Center for Synthetic Biology and Innovation
Type: Journal Article | Journal: PloS one | Year: 2015

Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).

Loading Center for Synthetic Biology and Innovation collaborators
Loading Center for Synthetic Biology and Innovation collaborators